
Operational planning in state machines

Hans Georg Schaathun1 Magne Aarset2∗
〈hasc@hials.no〉 〈maaa@hials.no〉

1Faculty of Engineering and Physical Sciences
2Faculty of Maritime Technology and Operations
Høgskolen i Ålesund, Boks 1517, 6025 Ålesund

Abstract
Increasing offshore activity result in new, demanding marine operations.
Risks increase as loads get heavier, installations move subsea, and
activities move further North. Detailed planning is required, but current
techniques make little use of information technology, with paper-based
plan-work easily filling multiple binders. Information overload becomes
an added threat.

Two key challenges can be seen. One is to develop good planning
frameworks, to enable plans with robust risk management and control.
This calls for modelling techniques for operational plans. Another is
optimal presentation of the plan for each individual crew member, both
for briefing and during the execution of the operation. Ready access
to relevant and safety critical information must be ensured. This calls
for operational software to support situation-awareness. A fundamental
necessity to tackle either challenge is a modelling framework supporting
joint understanding of the operation between operational planners, ship
crew, software engineers, and ultimately the support software. This
paper shows how to amalgamate three different modelling approaches:
HTA, SADT, and state machines. We also discuss how the resulting
models can be used in operational support software.

1 Background
It is well-known that most serious accidents are caused by human error. It is
particularly well documented in aviation, but the same tendency can be seen in
marine operations and elsewhere. Technology has evolved with redundant systems
and fault tolerance, to eliminate most accidents due to technical fault. The current
focus has thus moved to improving human performance. In this paper, we focus on
demanding offshore operations, such as anchor handling and supply of offshore oil
rigs.

∗The authors would like to thank Leiv Kåre Johannesen for helpful discussions around the
sample operation, and also the anonymous referees for very constructive feedback.
This paper was presented at the NIK-2013 conference; see http://www.nik.no/.



Situation Awareness
Perception
of Elements
of Situation

Comprehension
of Situation

Projection
of Future
Situation

Level 1 Level 2 Level 3

DecisionActionState of
Environment

Figure 1: Situation-awareness — levels of perception.

Situation awareness is a hot
topic in human factor research.
Crew members make decisions
based on their perception and
understanding of the environ-
ment, this perception – or situa-
tion awareness – progress in dif-
ferent levels (Figure 1). Subop-
timal comprehension will lead
to suboptimal, and occasionally
fatal, decisions. Perceiving in-
dividual pieces of information is
straight-forward. Comprehend-
ing the situation, through the
filtering of relevant information from noise, is much harder. In complex and de-
manding operations, information overload can hinder situation awareness.

The information needed by the operational crew include both dynamic
information, including the current state of the ship, ship sensors, visual observation,
and static information, comprising operational plans, procedures, and legislation.
One approach to support and increase situation awareness would be an information
system to filter relevant information and visualise and present it in an effective way.

Figure 2: Status quo. Plans and procedures on
paper.

Current plan-work and procedures
are mainly based on paper (as in Fig-
ure 2) or possibly PDF-documents, of-
ten a result of months of planning
by on-shore engineering teams. Avail-
able software is mainly standard office
packages, with Microsoft Word as the
dominant player. Diagrams and fig-
ures may be produced by CAD tools
or project management software, with-
out any means to integrate information
from different sources in electronic form.
The lack of established modelling frame-
works makes structuring and machine
processing of the plan-work difficult.

The need for on-board decision sup-
port software has been recognised by
several authors [12, 11, 15]. Several
groups and companies focus on integrated bridge designs, where information from
different subsystems are accumulated in a single bridge system for coherent presen-
tation. Search and rescue operations has received particular attention, including
Glässer et al. [7, 8], who presented a decision support system using sensor data from
the ship, and Lijnse et al. [10] who discussed a work-flow management system.

Integrating and using relevant static information in the on-board system is still
an open problem. This is particularly important for demanding offshore operations
which are carefully planned ahead of execution, contrary to search and rescue
operations. Some authors have discussed the modelling of the marine operation and



on-board tasks, but their objective has mainly been off-line assessment. Embrey
et al. [4] studied workload assessment for on-board crew, reviewing a number of
modelling and task analysis techniques for this purpose. Others have focused on
risk assessment [6] and risk management [9]. Unfortunately, the underlying models
and software architecture have not been published.

We [13] have previously discussed the modelling of demanding operations,
amalgamating modelling techniques from software engineering and from operational
planning and human factor research. In this paper, we further extend this work by
incorporating a more advanced modelling framework from human factor research,
namely SADT, and defining the concept of roles to support tailored presentation
for individual crew members. As before, our main contribution is to develop a
language which can be shared by the different disciplines involved, including software
engineering, operational planning, risk management, and offshore vessel crew.
This is achieved by building on familiar concepts in each discipline, highlighting
corresponding terms, and establish the links with other, familiar frameworks within
each discipline.

2 Modelling Background
Most areas of science and engineering have a concept of modelling, without
necessarily having a shared view of what constitutes a model, or what makes a
model relevant or appropriate. What we believe is the essence of modelling across
disciplines, is captured by the following quote by Bran Selic [14]:

[An engineering model is] «a selective representation of some system
that captures accurately and concisely all of its essential properties of
interest for a given set of concerns.»

We observe the focus on why we need modelling: Models aid the understanding of
complex systems. The appearance of a model (text, diagrams, formulæ) is irrelevant.

Two particular features are key to support understanding. Firstly, the model
is a representation of a system, and we can understand the system by studying
the model. Secondly, the representation is selective and relative to a given set of
concerns. Anything which is not needed for the task at hand should be shaved away
using Ockham’s razor. Thus, different models of the same object may be needed for
different kinds of analysis.

We are interested in two separate modelling domains, namely software and
operations. Software engineering has a rich literature on modelling, including formal
languages, metamodelling, and automated model transforms. Most well known is
the Unified Modelling Language (UML), which is not just one language but rather a
family of languages aiming to model different aspects (or views) of the system. As a
standard, UML has developed a very complex syntax to allow detailed representation
of models, but most of the modelling techniques promoted by UML are well-known
in other contexts and fully usable with a much simpler syntax.

Although differences may be identified between marine operations and business
processes, we can benefit from the rich literature on business and process modelling.
A classic is the Structured Analysis and Design Technique (SADT) [2] and the more
current IDEF0 standard building thereon.

A little work has been done to link modelling frameworks from different
disciplines. In particular, the human-computer interaction (HCI) community has



made some progress connecting human performance models to software architecture.
More formally, Bastide [3] integrates task models and use-case models on the
metamodel level.

3 Introduction to relevant modelling techniques
We will take a rather informal view of the modelling frameworks HTA, SADT, and
state machines. We focus on relating the fundamental structure of the frameworks,
rather than syntactic and semantic details, and refer the reader to other sources for
more details.

Hierarchical Task Analysis
We will start our discussion with Hierarchical Task Analysis (HTA), which is well-
known among operational experts. Emerged around 1970 in psychology and human
performance research, it is still popular. The technique is simple and flexible with
core ideas carrying over to the more formal approaches to be discussed later. A
good introduction is given by Stanton [16].

HTA is an iterative technique. At the first level, the operation is viewed as
a single task. Any task can be broken into subtasks with an increasing level of
detail. Each task and subtask should be described in terms of its goal, with an
objective statement of its intended outcome. The relationship between a task and
its subtasks is that of set inclusion; in a tree-like structure. There may or may not
be an annotated procedure describing how to process the subtasks.

There is no limit to the number of levels in the HTA tree; it is merely a question
of the desired level of detail. A trivial task should not be subdivided just for the sake
of it. Some branches may require more levels than others. Little formalism is offered
by HTA, making it very flexible and intuitive to use. Tasks may be elaborated by
free-form descriptions. For the low-level tasks, this could be an instruction sheet
comprising text and figures. High-level tasks, frequently require no more than a
sentence to say whether subtasks are to be executed in sequence, in arbitrary order,
or in some specific arrangement (such as loops or conditionals).

Structured Analysis and Design Technique
Another classic in operational and process modelling is the Structured Analysis and
Design Technique (SADT). It is possibly better known as IDEF0, which standardised
the syntax and semantics in 1981. We will focus on the approach and its key
concepts, rather than syntactic and semantic detail, and will therefore refer to
SADT, which is discussed with some variations in a number of textbooks.

Tasks in HTA correspond to activity boxes in SADT. As in HTA, activity boxes
are hierarchically subdivided into subactivities. SADT focuses on information flow
and resource dependencies between activity boxes.

As a running example throughout the paper, we will take a supply operation, i.e.
the delivery of supplies to an offshore rig. At the top level, the complete operation
forms a single SADT activity box as shown in Figure 3. The activity box is labelled
with the task, and furnished with four different kinds of arrows. Input to the activity
is represented by one or more arrows from the left, representing data or material
which is consumed or modified through the activity. Output is represented by one



Operation: Platform Supply

Complete supply
operationOrder

Acknow-
ledgement

WeatherProcedures Corporate
Culture

RigShip Base

Figure 3: Sample operation in SADT, top level

Activity: Complete Supply Operation

Receive
and
process
order

Base

Loading

Base Ship

Transit

Ship

Lift/-
Pump

Ship Rig

Return

Ship

Order

Acknow-
ledgement

Figure 4: Sample operation in SADT, level 1

or more arrows to the right. The output of one activity box may be the input of
another.

Arrows from above are called controls and may affect the activity in various ways,
whether by accident or by design. Controls are not modified by the activity, at least
not directly, and thus several activities may use the same control independently.
Detailed discussion of controls is out of scope for this paper. Arrows from below
represent resources, which are utilised but not consumed by the activity. This
includes both personnel and equipment. In the example, at the coarse level of
Figure 3, we include the crew with the ship, rig, and base. The ship and its crew
operate as a unit, and will not be separated during normal execution of the operation.

Any activity box can, recursively, be elaborated as an SADT diagram consisting
of multiple SADT boxes. See for instance Figure 4 where we have elaborated the
operation from Figure 3. We think of Figure 4 as zooming in on the top level activity
box. We note that every resource in the top level activity box also occur in the Level
1 diagram, in at least one subactivity. Likewise, the input and output from the top
level have to reoccur at the next level, and they are the only input/output arrows
which are connected at only one end. Other input/output arrows (internal arrows)



connect two subactivities. Unlike HTA, the arrows in SADT imply dependencies
between subtasks and sequencing constraints are made explicit. For simplicity, we
have suppressed the controls, but they would follow the same principle: the same
controls must be found in the parent activity and some subactivity. As in HTA,
the activity boxes may be annotated with free-form instructions, to give the users
a complete instruction. The value of annotations should not be underestimated.
The formal modelling is used to aiding understanding by structuring the plan-work.
Overdone, it would cloud understanding, and many details are best described in
free-form.

There are two distinct variations of SADT seen in existing applications. Even
though the distinction has not, to our knowledge, been made explicit in existing
literature, it is both important and easy to spot from a computer science viewpoint.
We will call them functional and procedural SADT respectively.

In functional SADT, we view the activity boxes as functions. The key features are
seen in the output as a function of the input, resources, and controls. This appears to
be the classic version in the literature and the most common intent in applications.
Production processes are typically described well in functional SADT, with raw
materials as input and product as output. Such processes will often be pipelined.
Using different resources for different activity boxes, they can work concurrently on
different batches of the product.

Procedural SADT is used in operational models, for instance in avionics [1].
Here, the input/output between activity boxes are signals or commands, indicating
that an activity is complete and a new activity can start. No materials are passed
between the aircraft pilot and control. Instead, the activities are concerned with the
state of a resource, namely the aircraft, and the input/output are assertions such as
‘ready for takeoff’.

State Machines
A fundamental modelling technique in computer and software engineering is that of
a state machine. We showed in [13] how HTA models can be translated into state
machines and used as the basis software to support situation-awareness.

Definition 1 A state machine is a directed graph, with nodes called states and edges
called transitions. Each transition is labelled with a Boolean condition.

The states can be thought of as mutually exclusive situations, and the transitions
represent the event where the system is brought from one state to another, which
happens when the label of the transition is true.

The UML concept of state machines has added two additional features to the
traditional definition. Firstly, we allow hierarchical state machines. In the same
way that we can ‘zoom in’ on an SADT activity box to see an elaborated SADT
diagram, we can ‘zoom in’ on a state to see a new, more detailed state machine. We
call the high-level state a superstate, and the states of the lower level state machine
are called substates. The superstate can be viewed as the union of all its substates.

The other new idea in UML state machines is orthogonal regions, which allow
parallel states. A superstate can be divided into multiple regions, each with its own
state machine with substates. The orthogonal regions are ‘processed’ in parallel,
and state transitions happen independently in each region. The total state space is
the Cartesian product of the state spaces for each region.



From SADT to State Machines
Many instances of SADT can be read almost directly as state machines, especially
in the case of procedural SADT. The output/input arrows in SADT introduce
dependencies between activities. An activity can only start once the input has
been received from the preceding activity, making the activities mutually exclusive.
The output/input arrows can be seen as state transitions, and the activity boxes
as states. For instance, the top level SADT activity box, disregarding resources
and controls, become a state machine when we connect the input arrow to a state
called ‘not started’, and the output arrow to a ‘completed’ state. Such entry and
exit states are sometimes called pseudo-states and marked with special symbols in
UML.

The resources from SADT must be added to the state machine model. It can be
formalised as a relation R ⊂ S × R where S is the state space and R is the set of
resources.

Many operations are strictly sequential, due to safety and transparency
requirements. This is for instance the case in Figure 4. In such cases, the translation
from SADT to state machines is trivial. There are other cases, where the SADT
activity boxes should be undertaken in parallel. This may happen where one SADT
activity box provides the input to two or more activity boxes. If there are no other
dependencies, the corresponding activities may run in parallel.

In the state machine model, such parallel activities must be collected in one
superstate with parallel regions. Thus, we may have to introduce an extra level in
the state machine model, compared to SADT, to fit the parallel regions. This has
the advantage of making the parallelism very explicit, clarifying the SADT model.
Often, each region will have only a single state apart from entry and exit pseudo-
states, corresponding to the activity box from SADT.

Parallel activities are well justified when they do not share any resources. Then
each resource will only need to be aware of a single activity box or a single state in
the state machine at any point in time. In theory, SADT would allow us to express
a model where one resource is engaged in multiple parallel activities, but it would
give no information about how to share the resource between the activities. If the
resource is a crew member, he would have to keep both activities in mind with no
help from the model, leading to unnecessary cognitive strain. Therefore, we assume
that parallel activities in useful models will not share any resources. Consequently,
in the state machine model, each orthogonal region within a superstate will have
non-intersecting resources.

4 Models of Marine Operations
We have seen how main principles of different modelling frameworks can be mapped
to each other, and briefly discussed how modelling frameworks can be restricted
or augmented with very simple means to facilitate translation and avoid certain
under-defined cases.

Understanding situation
Our main objective is to capture the idea of situation awareness. In
human performance research, a situation denotes the complete context (state of
environment) that a human is relating to at a point in time. There are, of course,



no limits to the amount of detail which can be included in the notion of a situation.
When we model the operation, we will need to limit our scope, to get a well-defined
space of possible situations.

A hot topic in software engineering is that of context awareness. This may
appear related to situation awareness, but the differences turn out to be significant.
A context is usually defined as a fixed environment, independent of the user, which
any user can enter or leave. A context could for instance be a shopping mall, where
the software tailors the view to include available promotions, local restaurants, etc.
Any number of users may enter the same context without interacting or changing
it. Our notion of situation is subjective and highly dependent on each user present.
If a deck officer suddenly were to leave the ship, a new situation would arise for
everyone involved.

In contrast, a situation seems to be closely related to an activity box in SADT
or corresponding state in a state machine model. The current state defines what
has been completed and what has to be done next. These are crucial pieces of
information for the crew involved. The definition of state implies that each role is
concerned with only a single state at a time.

The operational plan usually defines a number of key indicators which have to
be monitored, typically performance or safety parameters such as fuel consumption
or wind speed. Critical thresholds may be set to trigger alarm situations. All key
indicators are not necessarily relevant at every stage of the operation, and thus they
may change depending on the current state in the model. These key indicators is
the second crucial piece for situation awareness.

Modelling resources and roles
A key element in our vision is to give tailor-made presentations for each crew
member. This is a well-understood problem in software engineering. We usually
consider roles rather than individuals (e.g crew members). A role can be defined as
a set of rights and responsibilities, and a physical person can have multiple roles,
and several people may have the same role. The software should respond to the role,
rather than the identity, of the user.

In SADT, the crew members are a special case of resources, and they are recorded
in the model by arrows from below in the different activity boxes. Thus, SADT
already provides some information as to what information will be significant for
each crew member.

In complex marine operations, the resources can be hierarchically organised. In
our example we included crew with each of the ship, rig, and base. At lower levels,
with more detail, individual members of the ship crew would be assigned to different
activity boxes. Thus we view the resources in the SADT diagram as subsets, rather
than elements, of the universe of resources.

The significance of a role in a marine operation is not obvious. The role of
captain is permanent (also when the captain is asleep). The officer of the watch
is a transient role, typically held by the captain during critical phases and another
officer most of the time. Aiming to support situation awareness and limit cognitive
strain, each crew member should have only one role at a time, so that the software
can manage the complete set of information required.

Focusing on critical phases of the operation, where the need for new support
tools is the greatest, we define a role, which appears as SADT resources, as the set



of responsibilities and rights assigned to a given crew member. This works because
the operational plan will assign each crew member to a specific post, with rather
detailed descriptions of duties. The concept of roles must be refined in the future,
to allow crew members to change post during longer missions, while still allowing
each crew member to focus on only a single role at a time.

Modelling undesirable situations
So far, we have assumed that the operation goes according to plan, and there is only
one possible successor state whenever one state is complete. In reality, accidents
do happen, and contingency planning is essential. Each contingency plan consist
of a set of conditions defining when it comes into effect, and a ‘recovery operation’
aiming to return to a safe state, either to continue the operation or to abort.

Contingency planning is not explicitly supported in SADT or HTA, but the
contingency conditions may be defined in the free-form activity description, with a
cross-reference to the recovery operation, which itself can be modelled using SADT
or HTA. A good reason to do it this way, is that contingency activities would quickly
clutter an SADT diagram.

Contingency planning is very easy to model in the state machine. For each
contingency plan, we add a state corresponding to the situation(s) where the plan
comes into effect. Transitions into this state are labelled with the contingency
conditions. UML even provides convenient notation for contingencies which can
occur in any substate and cause early transition from the superstate. An SADT
model of the contingency plan can then be translated into substates of the
contingency superstate. Typically, the contingency conditions are defined in terms
of key indicators.

We categorise the states with a traffic light scheme. Green represent normal,
planned states. Contingency states are coloured amber if we aim to recover the
operation, or red if we aim to abort. A fundamental concept in operational plans
is stop criteria, i.e. conditions where the operation must be aborted. In the state
machine model, this specifies a transition into a red state. We can formalise the
definition as follows.

Definition 2 A stop criterion is defined as the label of some transition from an
amber or green state into a red one.

5 Software
The main vision behind this work is an on-board information system to enhance
situation awareness. The idea is to give each crew member (role) a presentation of
the most relevant and safety critical information, tailored both to the given role and
to the current situation, as determined by the state in the operation plan.

The proposed software architecture is depicted in Figure 5, using a typical multi-
tier framework. The Static Model Layer handles the operational plan and associated
pre-authored information the using modelling framework as described. This includes
persistent storage and import from other software such as an editor, exemplified here
by an SQL database and an XML file, respectively.

The second layer provides the situation awareness, keeping track of the current
state according to the static model. It includes communications with other on-board
systems, sensors in particular, to access dynamic situation-relevant information.



State Model XML parser

Static model layer
XML
file

SQL
DB

Dynamic State Sensor Services

Situation-aware Middleware
Log Sensors

Captain Engine chief . . . Gunner

Role-aware Logic

Captain’s View Engine view . . . Gunner’s view

Presentation

Figure 5: Software architecture

View Control

Role

State Transition
Conditions

Dynamic
Data

Figure 6: Architecture for the state aware logic (situation aware middleware).

It will monitor key indicators, stop criteria, and transition conditions. Note that
the situation aware layer only needs read access to sensors and other on-board
systems, so that interference is limited. The log is a suggested feature, which could
automatically record task completion and state transitions with time stamps. This
could be a dedicated service for this system, or, if write access is granted, the logging
data may be fed to another on-board system.

The role-aware logic contains modules for each supported role, managing the
information relevant for that particular role, based on information retrieved from the
situation-aware layer. Each role-specific module in the role-aware logic is mirrored
by a module in the presentation layer on top, providing a user-friendly presentation
of the relevant information. The role-specific views need to take into account not
only the interface to the corresponding role-aware module, but also the available
equipment to view the information. Some roles may have large, fix-mounted screens,
while others have portable, pocket-size screens.

The more detailed design is rather straight-forward, using standard design
principles with low coupling and high cohesion. Design patterns [5] provide a
structured and standardised approach to support the key features in the architecture.
A model-view-controller (MVC) pattern is used. The model is complex, comprising
several modules in the role- and state-aware layers. A simple outline is given in
Figure 6, considering a single role only. The State module keeps track of the current



state at any point in time, and provides access to relevant key indicators and other
dynamic objects. The Role module filters the information for the given role.

State transitions are controlled via Transition Condition objects which
implement the Specification pattern to allow composite conditions (and, or).
Conditions may change either as a result of user control or as a result of dynamic
data (e.g. sensor data). Both the Transition Conditions, the State, Role, and View
need to implement the Observer pattern to detect state changes.

A prototype demonstrating the core ideas was discussed in [13], and has since
been extended. Page constraints prevent us from discussing it here.

We have glossed over one important question, namely the balance between
manual and automatic control. It has been pointed out [10] that the absolute
authority in marine operations rest with the commanding officer. The decision
to execute the next task or enter a contingency plan has to be made by a human
decision maker. Hence, such state transitions should be triggered by a command
from the captain, and not by an automated system. This does not change the fact
that stop criteria and other transition conditions should be monitored and detected
by the system. It merely means that the system should alert the relevant decision
maker to the changing situation and recommend a decision. This may be handled
at a lower level of the hierarchical model, by automatic state transitions between
substates in a region associated with the captain only. More work is needed to get
all the details in place.

6 Conclusions and open problems
Our main contribution is a modelling framework supporting communication and
shared understanding between ship officers, operational planners, software engineers,
and operational analysts. This is the first step towards effective, computer aided
presentation of plan-work. A software architecture and prototype provides a proof
of concept, demonstrating the feasibility of the approach. The modelling framework
allow us to model plans in a machine processable way.

Important problems remain open, both on the modelling side and the
implementation side. The most important project to undertake is case studies,
to test and evaluate the modelling framework on real demanding marine operations.
This is necessary to verify its applicability and identify required improvements,
and it will give information about limitations and scalability. We will also need a
formalisation of the modelling framework.

In terms of implementation, we have focused on the business logic and model
management. Good presentation and visualisation of information remains an open
problem. We need a better understanding of the work situation and information
needs of the ship crew. Based on such an understanding, a new user interface
must be built and evaluated. The user interface is the means to support situation
awareness, and it has to be very well designed to succeed.

The proposed modelling framework is not limited to the proposed on-board
software. Individualised presentation and visualisation of the plan would be very
helpful for the captain briefing his crew. A model editor would also be a useful tool
in operation planning, and the framework could be extended to incorporate risk,
for the purpose of risk assessment and risk management. There are good reasons to
prioritise these applications before the proposed on-board system, as they may prove
easier to realise in the short term, both in terms of implementation and adoptability.



The solutions to the different open problems must be drawn from widely
different disciplines: nautical studies, computer science, and human-computer
interaction. We hope that the present work will support the necessary inter-
disciplinary collaboration to realise the vision in due course.

References
[1] Magne V. Aarset. Risk management. Forsikringsakademiet, 1999.

[2] Magne V. Aarset. Kriseledelse. Fagbokforlaget, 2010.

[3] Rémi Bastide. An integration of task and use-case meta-models. In Julie A. Jacko, editor,
HCI (1), volume 5610 of Lecture Notes in Computer Science, pages 579–586. Springer, 2009.

[4] David Embrey, Claire Blackett, Philip Marsden, and Jim Peachey. Development of a human
cognitive workload assessment tool. Technical report, Human Reliability Associates Ltd., July
2006. MCA Final Report.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-
Wesley, Boston, MA, January 1995.

[6] B Gauss, M Rötting, and D Kersandt. Naridas – evaluation of a risk assessment system for
the ship’s bridge. In Human Factors in Shop Design, Safety and Operation. RINA - The
Royal Institution of Naval Architects. International Conference., March 2007. London, UK.

[7] Uwe Glässer, Piper Jackson, Ali Khalili Araghi, and Hamed Yaghoubi Shahir. Intelligent
decision support for marine safety and security operations. In Intelligence and Security
Informatics (ISI), 2010 IEEE International Conference on, pages 101 –107, May 2010.

[8] Uwe Glässer, Piper Jackson, Ali Khalili Araghi, Hans Wehn, and Hamed Yaghoubi Shahir.
A collaborative decision support model for marine safety and security operations. In Mike
Hinchey, Bernd Kleinjohann, Lisa Kleinjohann, Peter A. Lindsay, Franz J. Rammig, Jon
Timmis, and Marilyn Wolf, editors, Distributed, Parallel and Biologically Inspired Systems,
volume 329 of IFIP Advances in Information and Communication Technology, pages 266–277.
Springer Berlin Heidelberg, 2010.

[9] Hans Hederström, Diethard Kersandt, and Burkhard Müller. Task-oriented structure of the
navigation process and quality control of its properties by a nautical task management monitor
(ntmm). European Journal of Navigation, 10(3), December 2012.

[10] Bas Lijnse, Jan Martin Jansen, Ruud Nanne, and Rinus Plasmeijer. Capturing the netherlands
coast guard’s SAR workflow with iTasks. In David Mendonca and Julie Dugdale, editors,
Proceedings of the 8th International Conference on Information Systems for Crisis Response
and Management, ISCRAM, May 2011.

[11] Lee A. Luft, Larry Anderson, and Frank Cassidy. Nmea 2000 a digital interface for the 21st
century. In Institute of Navigation Technical Meeting, January 2002.

[12] Margareta Lützhöft. The technology is great when it works. PhD thesis, 2004.

[13] Hans Georg Schaathun, Magne Aarset, Runar Ostnes, and Robert Rylander. Hierarchical task
analysis, situation-awareness and support software. In Webjørn Rekdalsbakken, Robin T. Bye,
and Houxiang Zhan, editors, 27th European Conference on Modelling and Simulation, pages
184+. European Council for Modelling and Simulation, 2013.

[14] Bran Selić. Abstraction patterns in model-based engineering, February 2011. Keynote slides
from ModProd 2011 at http://www.modprod.liu.se/MODPROD2011?l=en.

[15] Steve Spitzer, Lee A. Luft, and David Morchhauser. Nmea 2000, past, present and future. In
RTCM Annual Assembly Meeting and Conference, May 2009.

[16] Neville A. Stanton. Hierarchical task analysis: Developments, applications, and extensions.
Applied Ergonomics, 37(1):55 – 79, 2006. Special Issue: Fundamental Reviews.


