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Abstract

In the PESTO file system, the complete file update history is kept as a tree 

of file versions. It will often be desirable to give access to subsets of the file 

versions history without having to grant access to the entire tree. Keys on 

Trees  is a scheme for assigning attributes to every tree node in such a way 

that knowledge of the attribute of one node makes it possible to calculate 

the attribute of every subnode, but impossible to calculate the attribute of 

any other nodes. This paper describes Keys on Trees and how it is intended 

applied in PESTO.

1 Introduction

Before we get into the details regarding cryptographic access control, we need to give an 

introduction to the context, namely the PESTO file system [1]. PESTO is a distributed, 

version based file system that provides its users with highly available, secure and 

sharable storage. One of the main goals of PESTO is to maximize progress at 

disconnection, and this is achieved through decentralization of administrative control.  

Files in PESTO are stored as sets of file versions. Updates are non-destructive in that no 

information is lost by an update to a file; all its history is kept. The storage model for file 

versions is Write-Once Read-Many-Times. The set of file versions is partially ordered 

and structured as a tree, where each version has a link to its parent version (Figure 1 (a)). 

Each file version is encrypted with a separate key. A file is associated with a file key and 

each version with a version key (Figure 1 (b)). File versions are the units of storage, 

distribution and access, and access control is performed by limiting the access to the 

version keys.

* This work has been supported in part by the NFR funded project No. IKTSOS 158569/431 PENNE 
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Figure 1: (a) Each file update has a link to its parent update. The initial empty version has no parent 

update.  (b) Each file update is encrypted with a separate version key, and the version keys are in 

turn encrypted with the file key. 

A user that wishes to make an update or to read a file needs to send a request for this to 

the owner of the file, which in turn may grant this access. In order to be able to read a 

file, the reader needs the version key for the relevant version. Authorized writes require a 

fresh version key, that is, a key that has not previously been used, and a copy of this key 

encrypted with the file key of that file. For more details, see [1]. 

In the current system a user has to make requests for the keys that he needs to make his 

intended updates, i.e. one key per update. Knowing how many in advance may be hard 

and, thus, the user may have to request more keys later. If connected, this is not a 

problem, but if he is going to be offline for a while a different solution to key 

management is desirable. 

It may also be desirable to be able to grant access only to subsets of the version history 

tree. For example, a patient would like to give his doctor access to his medical record. If 

he moves, however, he would not like his old doctor to read his future record. This is 

hard to implement in PESTO. 

Keys on Trees [2] supports resolving these problems, and provides a way of generating 

keys in a consistent manner, while at the same time conforming to the PESTO goal of 

maximum progress at disconnection. 
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The remainder of this paper is structured as follows. The next section will give a 

description of Keys on Trees. Section 3 will then provide some examples on how we 

intend to use this in PESTO. Some related work and discussion then follows. 

2 Keys on Trees 

2.1 Notation

Since any tree may be thought of as a subtree of the complete binary tree, T , we will 

only study the key structures for this in the following. T is associated with all finite 

binary strings 1,0 . The empty string is denoted  and ba  denotes the concatenation 

of the strings 1,0,ba . This organizes the strings into a semigroup denoted String .

Every string 1,0a  (thought of as an address) defines the subtree Ta  of all strings 

with prefix a . This gives the set subT  of subtrees TaTa . We identify T  with the 

subtree T .

2.2 Finding a function 

Figure 2 illustrates the complete binary tree, T ; Xx is the attribute/key assigned to the 

root.

1
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Figure 2: Binary tree 

For calculating the attribute of a node we define a flow on the tree which assigns the 

value ),,( bTayV  to a descendant of the subtree Ta . This can be expressed by 

defining the functions 

iTaxV ,,  for }1,0{i

i  indicating which descendant of Ta ; e.g. 1i  for calculating the value for 

Tba )( ,  which is a descendant of Ta  (Figure 2). 
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Since we want to be able to calculate the flow values for all descendants but make it 

impossible to calculate values for any ascendants, the idea is to use one-way functions to 

express the flow functions. We first consider simple one-way functions obtained by 

exponentiations in a group X :
bsrb

xbTaxV 32,,

where }1,0{b and 2mod)1( bb . The integers r and s are calculated by a weight 

function

srbTaxw ,,,

The flow values in the tree will then be repeated compositions of 2x and 3x .

Though formally any function 

ZZsubTXw 1,0:

can be used as a weight function, care must be taken when choosing the function. We will 

now provide an example to illustrate why having a one-way function is not enough to 

achieve what we want.

2.3 An attack on the flow 

It is tempting to use an X - independent, additive function to obtain a nice formula for 

the flow function. Let )(al denote the length of a string a , a  the number of  0’s in a

and 2)(a the number with binary digits a , the least significant digit to the left. A few 

example functions are: 

21 2, bbTaw al   (1) 

bbTaw ,2   (2) 

Neither one of these functions is injective, but injectivity can be obtained through the 

combination: 

bbwwbTaw al ,)(2,, 2

)(

21

We thus get the flow 
balww b

xxbTaxV
3)(232 2

)(21

,,

and see that 

),(2),(1),(2),(1 3232 aTwaTwbTwbTw

xx

requires the exponents to be congruent modulo the order of x  in X . The exponents are 

equal if and only if ba , since ),)(( 2 aa specifies a  uniquely.

Example, sideway leakage: 
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Let ),( Tay  be a given element of the flow just defined. The attack algorithm calculates 
aa

32 2)(
. Let

sac 2)(

and

cd (  to the base 2 )

where 0s .

Let b be any string obtained from d padded right with enough 0’s such that 

tab  the number of 0’s in d

for 0t . The least possible value of t  is determined by ad ,  and s . Let 

nyz
ts

mod32 . The attack algorithm calculates Tbz, . If there exists an x such that: 

TayaTxflow ,,,   (1) 

then

yx
a

32 22

and
bbts

xyz 3232 2

such that 

TbzbTxflow ,,,  (2) 

The calculated value Tbz,  is a descendant of Tay,  if and only if 12 ss al .

This would mean that a is a prefix to b . Other values for s  break the system. Note that 

the attacker does not prove that the given value Tay,  actually is in the flow, that is, 

that an x  fulfilling (1) exists, only that the attack succeeds if this is the case. 

To illustrate; the attacker obtains the element 0,3 ax  of the flow on the tree shown 

in Figure 3: 

1

0 1

0

x

3x 2x

6x

Figure 3 

if a different flow value Tbz,  is to be calculated from the given value, then 

w
aabb

xx 3232 22

The attacker sets tsw 32  such that  

sssab 022
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ttab 1

By choosing 1s  and 0t , the attacker has obtained the flow value 10,6 bx ,

which is not a descendant of 0,3 ax , without knowing x .

The success of the attack depends on the possibilities of calculating the weight aTw ,

from the knowledge of a  and then the logarithm of y to the unknown base x . The 

homomorphic properties of the logarithm makes it possible to manipulate the exponents. 

The main problem, though, is the possibility of finding exponents corresponding to 

solutions not being descendants of Tay,  and then to find matching strings b  to these 

exponents without knowing x .

2.4 Definition of attacks and security 

The above example shows that a precise definition of an attack and security is needed. In 

addition to the requirement of a one-way function, a hypothesis regarding non-

calculability restricting the attacking algorithm is needed:

Non-calculation hypothesis 

Hypothesis 1: The flow value function is one-way 

The flow function in one-way, that is, suppose r is random and that ),( Tar given to the 

attacker. If the attacker does not know an ascendant of )*,( Tar , he will not succeed in 

calculating one with more than negligible probability. 

Hypothesis 2: The weight function is unsolvable 

For a random x no efficient algorithm will find a solution )),(,( SRc of the equation 

SRcTxw ,,,

without knowing the value of bTxF ,, , where b is a known, proper prefix to c .

The Definition of Attacks 

An attack is an efficient, probabilistic algorithm which from a given value 

Taz, calculates a value Tby, . The attack is successful if: 

a  is not a prefix to b

If TazaTxF ,,,  then TbybTxF ,,,

The equation TbybTxF ,,,  can be efficiently verified under the 

hypothesis TazaTxF ,,,
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The success rate of the attack is measured by the probability that the calculation shows 

that bTxFTby ,,,  where a  is not a prefix to b .

An X - flow is then cryptographically secure if there is no efficient attack algorithm 

running in acceptable time with an unacceptable success rate. 

Theorem: The probability that an attack restricted by hypothesis 1 and hypothesis 2 

succeeds on the flow is negligible. 

Proof:

Let F be the flow with Tby, , the value calculated by an attack algorithm A . Suppose 

TazaTxF ,,,  for a value x unknown to the attacker and that the attack is 

successful. Then for some integers sr,  a priori unknown to the attacker 

sraTxw ,,, and
sr

xzaTxV 32,,

Since TbybTxF ,,, ,

SRbTxw ,,,  and 
SR

xybTxV 32,,

Since by,  is calculated from Taz, ,

Msr

xy 32

for an integer M calculated by the attacker. The string b calculated by the attacker is then 

a solution of the equation

bTxwSR ,,,

for an x such that 

aTxVz ,,

and for numbers SR,  such that 

MsrSR

xx 3232

This implies that an efficient and successful attacker either has found a solution x  of the 

second equation or found a solution of the first without knowing x . According to 

hypotheses 1 and 2 this implies that when a is not a prefix of b , an event with very small 

probability has occurred. 

2.5 Unsolvable weight function 

The weight function we chose in the example was X -independent, so it seems like a 

natural solution to make the function deeply dependent on X . We then need to consider 
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calculations in the group X. The basic requirement of the group is that the functions 
2x and 3x  are one-ways, so we want a group where these functions are one-ways under a 

reasonable assumption. The group nZ , where qpn , and p and q are very large 

primes, seems to be a good choice, based on that the calculation of roots is considered 

difficult (Details regarding this can be found in [2]). The weight function could then be 

implemented by adapting collision free hash function with good randomizing properties. 

2.6 Applications

If  4mod3qp , the flow values can be used as seeds to the cryptographically secure 

BBS-generator. In this way it is possible to assign a cryptographically strong bit sequence 

aTxVBBS ,,  as an attribute to the subtree Ta  for every string a . From each bit 

string aTxVBBS ,,  we can choose bit strings as AES-keys, RSA-parameters eqp ,, ,

ElGamal parameters hgp ,,  etc. by deterministic algorithms.  

3 Applications in PESTO 

The system just described fits nicely with the way file versions are organized and handled 

in PESTO. We will now outline a few ways in which this may be applied in the file 

system. 

3.1 Collaboration on files – Write Access 

As previously described, a user that wishes to contribute updates to a certain file needs to 

request a fresh member key for each of these updates. With Keys on Trees, the creator of 

a file can generate two keys, 1x  and 2x , from the original/seed key x  (Figure 4). He may 

then continue working on the part of the tree rooted at 1x  while the other key, 2x , can be 

used to delegate write authority to another user in the system. The other user may then 

continue making new file versions without having to send a new request each time he 

needs to make an update to the file, since he can generate additional keys from 2x .

1x 2x

x

Figure 4: Generate two new keys from the original key 

In this specific scenario, only the creator has access to the entire update tree. It may be 

useful to also hand over x , so that they both can read the other user’s updates, but the 

creator still needs to generate two keys so they have different starting points. Upon 

merge, the other user only needs to send the encrypted updates to the creator, since the 

creator of the file will be able to calculate all the keys that are needed to decrypt the file 

updates. In the same manner, if another writer enters the system at a later stage, he may 
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be handed the key nx and write updates to the subtree rooted at the node assigned this 

key, without access to the rest of the tree.  

3.2 Read Access 

While it may be advantageous to let users that have been given write authority the ability 

to generate new keys on their own, it is not necessarily the case with reads. We would 

still want to be able to give someone read access to single versions of the file. This is not 

a problem with Keys on Trees. Instead of handing out the actual key to someone, a hash 

of the key could be used to encrypt the file. This way the key need not be revealed to that 

user, which otherwise could use it to gain access to later versions of that file. 

3.3 Revocation

How to revoke access in this system will depend on what access rights need to be 

revoked.

Revoking further update access 

This would depend on where in the tree the user that needs to be denied access initially 

was granted access. If access to the whole tree previously was granted, the whole tree 

needs to be assigned new attributes. It would be a little different if access to only a 

smaller part of the tree needs to be revoked. If there are leaf nodes available, the subtree 

could be moved here and then only the attributes for these nodes need to be recalculated 

(Figure 5). If the subtree cannot be moved, then all attributes are recalculated. In all cases 

the newly encrypted versions are distributed, (like in the current system, without Keys on 

Trees).

compromised 

subtreeavailable 

leaf node

Ta1

Ta2

(a)     (b) 

Figure 5: There is a free leaf node (a), so the subtree that is rooted at 1a can be moved here, with the 

new address 2a  (b). 1a  is no longer a valid address in this tree. 
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Revoking read access 

First of all, if someone has read something, the damage is already done. Furthermore, if 

the access was only for a specific version, and it is sufficient that this user does not have 

access to future versions of the file, then nothing needs to be done. Otherwise, the file 

version tree could have the keys recalculated in the same manner as when revoking write 

access.

3.4 Other

This grouping of related updates is useful in a couple of other ways, for instance, if the 

creator of a file decides that he wants to ignore the updates made by another user, for 

whatever reason, having these updates residing in the same subtree makes not using them 

easier to handle, since one can just leave out this part of the tree. Keys on Trees will also 

make it possible to partially reveal the events that have taken place for recovery purposes 

and the gathering of evidence.  

4 Related Work and Discussion 

Hierarchical access structures are found in many different contexts; for instance 

organizations and distributed applications such as multimedia applications and databases. 

Previous work has been done on access control in such contexts both on tree structures 

[4][7] and general partially ordered sets (posets) [3][5][6][8]. The setting in these cases is 

that users and resources are grouped into different security classes, so the hierarchy 

consists of these classes. Sandhu [4] studies users and information items that are grouped 

into security classes in a tree structure. The keys in the subtrees are generated by applying 

one-way functions iteratively. The different classes have different one-way functions. 

Which function to apply, is based on name of the child. The names and function family 

are all publicly known. General posets are dealt with in e.g. [5], where a few different 

access control schemes for distributed environments are described. Among others a one-

way function-based keying scheme, which is a generalisation of Lin’s scheme [6]. Each 

node selects its own key independently, but it is possible to deduce keys of descendants. 

Sideway leakages are dealt with through the use of so-called sibling intractable function 

families in [10]. 

An advantage of the Keys on Trees scheme is that adding nodes, i.e. making new 

versions, does not affect nodes higher up in the hierarchy. In the scheme suggested in [3], 

e.g., the keys of the ancestor nodes need to be recalculated every time a child node is 

added. One of the things that we need to evaluate, however, is the cost of calculating the 

keys in a tree when access is needed, since one potentially will need to traverse the whole 

path from the root to the node which contains the desired version. This will depend on the 

depth of such a tree. Zheng et al. [10] suggest one scheme for being able to calculate a 

descendant at a much lower level directly, which involves creating links between a node 

and each one of its ancestor nodes.   
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5 Conclusion/Future Work 

In this paper we have introduced Keys on Trees, and given an overview of how this 

system can be used in the PESTO file system. We believe this approach may prove 

useful. In comparison to today’s implementation, it is clear that the Keys on Trees 

solution provides improvement. When it comes to delegation of write authority, for 

instance, the scheme both reduces the number of messages exchanged, and makes it 

possible for a user to make as many updates as he may desire, also while not being 

connected, since each user can generate its own keys for the updates. We do, however, 

need to look into the details further. The next step now will be making an implementation 

that incorporates this scheme, and evaluate how this works in practice.

The PENNE project is a joint project between the Departments of Mathematics and 

Computer Science at the University of Tromsø. Two complementary efforts are 

combined: One in secure distributed systems research and one in cryptography. The 

overall goal of PENNE is to consolidate and enlarge the information security activity at 

the University of Tromsø. PENNE builds on previous work in the PASTA project, and 

later in the PESTO project at the Department of Computer Science. Keys on trees is one 

of the key issues currently being investigated using PESTO as a research vehicle. 
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