
Cryptographic Access Control in the PESTO File System
*

Margrete Allern Brose Ben Johnsen Tage Stabell-Kulø

 margrete@cs.uit.no ben@math.uit.no task@ifi.uit.no

Abstract

In the PESTO file system, the complete file update history is kept as a tree

of file versions. It will often be desirable to give access to subsets of the file

versions history without having to grant access to the entire tree. Keys on

Trees is a scheme for assigning attributes to every tree node in such a way

that knowledge of the attribute of one node makes it possible to calculate

the attribute of every subnode, but impossible to calculate the attribute of

any other nodes. This paper describes Keys on Trees and how it is intended

applied in PESTO.

1 Introduction

Before we get into the details regarding cryptographic access control, we need to give an

introduction to the context, namely the PESTO file system [1]. PESTO is a distributed,

version based file system that provides its users with highly available, secure and

sharable storage. One of the main goals of PESTO is to maximize progress at

disconnection, and this is achieved through decentralization of administrative control.

Files in PESTO are stored as sets of file versions. Updates are non-destructive in that no

information is lost by an update to a file; all its history is kept. The storage model for file

versions is Write-Once Read-Many-Times. The set of file versions is partially ordered

and structured as a tree, where each version has a link to its parent version (Figure 1 (a)).

Each file version is encrypted with a separate key. A file is associated with a file key and

each version with a version key (Figure 1 (b)). File versions are the units of storage,

distribution and access, and access control is performed by limiting the access to the

version keys.

* This work has been supported in part by the NFR funded project No. IKTSOS 158569/431 PENNE

177

File

File Update

File Update

File UpdateFile Update

File Update

File

Version Key

File Update

File Update

File Update

Version Key

Version Key

Version Key

Version Key

Version Key

File Key

 (a) (b)

Figure 1: (a) Each file update has a link to its parent update. The initial empty version has no parent

update. (b) Each file update is encrypted with a separate version key, and the version keys are in

turn encrypted with the file key.

A user that wishes to make an update or to read a file needs to send a request for this to

the owner of the file, which in turn may grant this access. In order to be able to read a

file, the reader needs the version key for the relevant version. Authorized writes require a

fresh version key, that is, a key that has not previously been used, and a copy of this key

encrypted with the file key of that file. For more details, see [1].

In the current system a user has to make requests for the keys that he needs to make his

intended updates, i.e. one key per update. Knowing how many in advance may be hard

and, thus, the user may have to request more keys later. If connected, this is not a

problem, but if he is going to be offline for a while a different solution to key

management is desirable.

It may also be desirable to be able to grant access only to subsets of the version history

tree. For example, a patient would like to give his doctor access to his medical record. If

he moves, however, he would not like his old doctor to read his future record. This is

hard to implement in PESTO.

Keys on Trees [2] supports resolving these problems, and provides a way of generating

keys in a consistent manner, while at the same time conforming to the PESTO goal of

maximum progress at disconnection.

178

The remainder of this paper is structured as follows. The next section will give a

description of Keys on Trees. Section 3 will then provide some examples on how we

intend to use this in PESTO. Some related work and discussion then follows.

2 Keys on Trees

2.1 Notation

Since any tree may be thought of as a subtree of the complete binary tree, T , we will

only study the key structures for this in the following. T is associated with all finite

binary strings 1,0 . The empty string is denoted and ba denotes the concatenation

of the strings 1,0,ba . This organizes the strings into a semigroup denoted String .

Every string 1,0a (thought of as an address) defines the subtree Ta of all strings

with prefix a . This gives the set subT of subtrees TaTa . We identify T with the

subtree T .

2.2 Finding a function

Figure 2 illustrates the complete binary tree, T ; Xx is the attribute/key assigned to the

root.

1

1

0 1

1

0

0

0

x

Ta

Tba)(

Figure 2: Binary tree

For calculating the attribute of a node we define a flow on the tree which assigns the

value),,(bTayV to a descendant of the subtree Ta . This can be expressed by

defining the functions

iTaxV ,, for }1,0{i

i indicating which descendant of Ta ; e.g. 1i for calculating the value for

Tba)(, which is a descendant of Ta (Figure 2).

179

Since we want to be able to calculate the flow values for all descendants but make it

impossible to calculate values for any ascendants, the idea is to use one-way functions to

express the flow functions. We first consider simple one-way functions obtained by

exponentiations in a group X :
bsrb

xbTaxV 32,,

where }1,0{b and 2mod)1(bb . The integers r and s are calculated by a weight

function

srbTaxw ,,,

The flow values in the tree will then be repeated compositions of 2x and 3x .

Though formally any function

ZZsubTXw 1,0:

can be used as a weight function, care must be taken when choosing the function. We will

now provide an example to illustrate why having a one-way function is not enough to

achieve what we want.

2.3 An attack on the flow

It is tempting to use an X - independent, additive function to obtain a nice formula for

the flow function. Let)(al denote the length of a string a , a the number of 0’s in a

and 2)(a the number with binary digits a , the least significant digit to the left. A few

example functions are:

21 2, bbTaw al (1)

bbTaw ,2 (2)

Neither one of these functions is injective, but injectivity can be obtained through the

combination:

bbwwbTaw al ,)(2,, 2

)(

21

We thus get the flow
balww b

xxbTaxV
3)(232 2

)(21

,,

and see that

),(2),(1),(2),(1 3232 aTwaTwbTwbTw

xx

requires the exponents to be congruent modulo the order of x in X . The exponents are

equal if and only if ba , since),)((2 aa specifies a uniquely.

Example, sideway leakage:

180

Let),(Tay be a given element of the flow just defined. The attack algorithm calculates
aa

32 2)(
. Let

sac 2)(

and

cd (to the base 2)

where 0s .

Let b be any string obtained from d padded right with enough 0’s such that

tab the number of 0’s in d

for 0t . The least possible value of t is determined by ad , and s . Let

nyz
ts

mod32 . The attack algorithm calculates Tbz, . If there exists an x such that:

TayaTxflow ,,, (1)

then

yx
a

32 22

and
bbts

xyz 3232 2

such that

TbzbTxflow ,,, (2)

The calculated value Tbz, is a descendant of Tay, if and only if 12 ss al .

This would mean that a is a prefix to b . Other values for s break the system. Note that

the attacker does not prove that the given value Tay, actually is in the flow, that is,

that an x fulfilling (1) exists, only that the attack succeeds if this is the case.

To illustrate; the attacker obtains the element 0,3 ax of the flow on the tree shown

in Figure 3:

1

0 1

0

x

3x 2x

6x

Figure 3

if a different flow value Tbz, is to be calculated from the given value, then

w
aabb

xx 3232 22

The attacker sets tsw 32 such that

sssab 022

181

ttab 1

By choosing 1s and 0t , the attacker has obtained the flow value 10,6 bx ,

which is not a descendant of 0,3 ax , without knowing x .

The success of the attack depends on the possibilities of calculating the weight aTw ,

from the knowledge of a and then the logarithm of y to the unknown base x . The

homomorphic properties of the logarithm makes it possible to manipulate the exponents.

The main problem, though, is the possibility of finding exponents corresponding to

solutions not being descendants of Tay, and then to find matching strings b to these

exponents without knowing x .

2.4 Definition of attacks and security

The above example shows that a precise definition of an attack and security is needed. In

addition to the requirement of a one-way function, a hypothesis regarding non-

calculability restricting the attacking algorithm is needed:

Non-calculation hypothesis

Hypothesis 1: The flow value function is one-way

The flow function in one-way, that is, suppose r is random and that),(Tar given to the

attacker. If the attacker does not know an ascendant of)*,(Tar , he will not succeed in

calculating one with more than negligible probability.

Hypothesis 2: The weight function is unsolvable

For a random x no efficient algorithm will find a solution)),(,(SRc of the equation

SRcTxw ,,,

without knowing the value of bTxF ,, , where b is a known, proper prefix to c .

The Definition of Attacks

An attack is an efficient, probabilistic algorithm which from a given value

Taz, calculates a value Tby, . The attack is successful if:

a is not a prefix to b

If TazaTxF ,,, then TbybTxF ,,,

The equation TbybTxF ,,, can be efficiently verified under the

hypothesis TazaTxF ,,,

182

The success rate of the attack is measured by the probability that the calculation shows

that bTxFTby ,,, where a is not a prefix to b .

An X - flow is then cryptographically secure if there is no efficient attack algorithm

running in acceptable time with an unacceptable success rate.

Theorem: The probability that an attack restricted by hypothesis 1 and hypothesis 2

succeeds on the flow is negligible.

Proof:

Let F be the flow with Tby, , the value calculated by an attack algorithm A . Suppose

TazaTxF ,,, for a value x unknown to the attacker and that the attack is

successful. Then for some integers sr, a priori unknown to the attacker

sraTxw ,,, and
sr

xzaTxV 32,,

Since TbybTxF ,,, ,

SRbTxw ,,, and
SR

xybTxV 32,,

Since by, is calculated from Taz, ,

Msr

xy 32

for an integer M calculated by the attacker. The string b calculated by the attacker is then

a solution of the equation

bTxwSR ,,,

for an x such that

aTxVz ,,

and for numbers SR, such that

MsrSR

xx 3232

This implies that an efficient and successful attacker either has found a solution x of the

second equation or found a solution of the first without knowing x . According to

hypotheses 1 and 2 this implies that when a is not a prefix of b , an event with very small

probability has occurred.

2.5 Unsolvable weight function

The weight function we chose in the example was X -independent, so it seems like a

natural solution to make the function deeply dependent on X . We then need to consider

183

calculations in the group X. The basic requirement of the group is that the functions
2x and 3x are one-ways, so we want a group where these functions are one-ways under a

reasonable assumption. The group nZ , where qpn , and p and q are very large

primes, seems to be a good choice, based on that the calculation of roots is considered

difficult (Details regarding this can be found in [2]). The weight function could then be

implemented by adapting collision free hash function with good randomizing properties.

2.6 Applications

If 4mod3qp , the flow values can be used as seeds to the cryptographically secure

BBS-generator. In this way it is possible to assign a cryptographically strong bit sequence

aTxVBBS ,, as an attribute to the subtree Ta for every string a . From each bit

string aTxVBBS ,, we can choose bit strings as AES-keys, RSA-parameters eqp ,, ,

ElGamal parameters hgp ,, etc. by deterministic algorithms.

3 Applications in PESTO

The system just described fits nicely with the way file versions are organized and handled

in PESTO. We will now outline a few ways in which this may be applied in the file

system.

3.1 Collaboration on files – Write Access

As previously described, a user that wishes to contribute updates to a certain file needs to

request a fresh member key for each of these updates. With Keys on Trees, the creator of

a file can generate two keys, 1x and 2x , from the original/seed key x (Figure 4). He may

then continue working on the part of the tree rooted at 1x while the other key, 2x , can be

used to delegate write authority to another user in the system. The other user may then

continue making new file versions without having to send a new request each time he

needs to make an update to the file, since he can generate additional keys from 2x .

1x 2x

x

Figure 4: Generate two new keys from the original key

In this specific scenario, only the creator has access to the entire update tree. It may be

useful to also hand over x , so that they both can read the other user’s updates, but the

creator still needs to generate two keys so they have different starting points. Upon

merge, the other user only needs to send the encrypted updates to the creator, since the

creator of the file will be able to calculate all the keys that are needed to decrypt the file

updates. In the same manner, if another writer enters the system at a later stage, he may

184

be handed the key nx and write updates to the subtree rooted at the node assigned this

key, without access to the rest of the tree.

3.2 Read Access

While it may be advantageous to let users that have been given write authority the ability

to generate new keys on their own, it is not necessarily the case with reads. We would

still want to be able to give someone read access to single versions of the file. This is not

a problem with Keys on Trees. Instead of handing out the actual key to someone, a hash

of the key could be used to encrypt the file. This way the key need not be revealed to that

user, which otherwise could use it to gain access to later versions of that file.

3.3 Revocation

How to revoke access in this system will depend on what access rights need to be

revoked.

Revoking further update access

This would depend on where in the tree the user that needs to be denied access initially

was granted access. If access to the whole tree previously was granted, the whole tree

needs to be assigned new attributes. It would be a little different if access to only a

smaller part of the tree needs to be revoked. If there are leaf nodes available, the subtree

could be moved here and then only the attributes for these nodes need to be recalculated

(Figure 5). If the subtree cannot be moved, then all attributes are recalculated. In all cases

the newly encrypted versions are distributed, (like in the current system, without Keys on

Trees).

compromised

subtreeavailable

leaf node

Ta1

Ta2

(a) (b)

Figure 5: There is a free leaf node (a), so the subtree that is rooted at 1a can be moved here, with the

new address 2a (b). 1a is no longer a valid address in this tree.

185

Revoking read access

First of all, if someone has read something, the damage is already done. Furthermore, if

the access was only for a specific version, and it is sufficient that this user does not have

access to future versions of the file, then nothing needs to be done. Otherwise, the file

version tree could have the keys recalculated in the same manner as when revoking write

access.

3.4 Other

This grouping of related updates is useful in a couple of other ways, for instance, if the

creator of a file decides that he wants to ignore the updates made by another user, for

whatever reason, having these updates residing in the same subtree makes not using them

easier to handle, since one can just leave out this part of the tree. Keys on Trees will also

make it possible to partially reveal the events that have taken place for recovery purposes

and the gathering of evidence.

4 Related Work and Discussion

Hierarchical access structures are found in many different contexts; for instance

organizations and distributed applications such as multimedia applications and databases.

Previous work has been done on access control in such contexts both on tree structures

[4][7] and general partially ordered sets (posets) [3][5][6][8]. The setting in these cases is

that users and resources are grouped into different security classes, so the hierarchy

consists of these classes. Sandhu [4] studies users and information items that are grouped

into security classes in a tree structure. The keys in the subtrees are generated by applying

one-way functions iteratively. The different classes have different one-way functions.

Which function to apply, is based on name of the child. The names and function family

are all publicly known. General posets are dealt with in e.g. [5], where a few different

access control schemes for distributed environments are described. Among others a one-

way function-based keying scheme, which is a generalisation of Lin’s scheme [6]. Each

node selects its own key independently, but it is possible to deduce keys of descendants.

Sideway leakages are dealt with through the use of so-called sibling intractable function

families in [10].

An advantage of the Keys on Trees scheme is that adding nodes, i.e. making new

versions, does not affect nodes higher up in the hierarchy. In the scheme suggested in [3],

e.g., the keys of the ancestor nodes need to be recalculated every time a child node is

added. One of the things that we need to evaluate, however, is the cost of calculating the

keys in a tree when access is needed, since one potentially will need to traverse the whole

path from the root to the node which contains the desired version. This will depend on the

depth of such a tree. Zheng et al. [10] suggest one scheme for being able to calculate a

descendant at a much lower level directly, which involves creating links between a node

and each one of its ancestor nodes.

186

5 Conclusion/Future Work

In this paper we have introduced Keys on Trees, and given an overview of how this

system can be used in the PESTO file system. We believe this approach may prove

useful. In comparison to today’s implementation, it is clear that the Keys on Trees

solution provides improvement. When it comes to delegation of write authority, for

instance, the scheme both reduces the number of messages exchanged, and makes it

possible for a user to make as many updates as he may desire, also while not being

connected, since each user can generate its own keys for the updates. We do, however,

need to look into the details further. The next step now will be making an implementation

that incorporates this scheme, and evaluate how this works in practice.

The PENNE project is a joint project between the Departments of Mathematics and

Computer Science at the University of Tromsø. Two complementary efforts are

combined: One in secure distributed systems research and one in cryptography. The

overall goal of PENNE is to consolidate and enlarge the information security activity at

the University of Tromsø. PENNE builds on previous work in the PASTA project, and

later in the PESTO project at the Department of Computer Science. Keys on trees is one

of the key issues currently being investigated using PESTO as a research vehicle.

References

[1] Dillema, Feike W. Disconnected Operation in the PESTO Storage System. 2004

[2] Johnsen, Ben. Keys on Trees

[3] Akl, Selim G and Taylor, Peter D. Cryptographic Solution to a Problem of Access

 Control in a Hierarchy. ACM Transactions on Computer Systems, Vol. 1, No. 3,

 August 1983, pp. 239-248

[4] Sandhu, Ravinderpal S. Cryptographic Implementation of a Tree Hierarchy for

 Access Control. Information Processing Letters 27 (1988) 95-98

[5] Birget, Jean-Camille et al. Hierarchy-Based Access Control in Distributed

 Environments. Proceedings of International Conference on Communication--ICC

 2001, June 2001, Helsinki, Finland, pp. 229-233.

[6] Lin, Chu-Hsing. Dynamic Key Management Schemes for Access Control in a

 Hierarchy. Computer Communications 20 (1997) 1381-1385

[7] Sun, Yan and Liu, K. J. Ray. Scalable Hierarchical Access Control in Secure

 Group Communications. IEEE INFOCOM 2004

[8] De Santis, Alfredo et al. Cryptographic Key Assignment Schemes for any Access

 Control Policy. Information Processing Letters 92 (2004) 199-205

[9] Ray, Indrakshi et al. A Cryptographic Solution to Implement Access Control in a

 Hierarchy and More. SACMAT’02

[10] Zheng, Yuliang et al. New Solutions to the Problem of Access Control in a

 Hierarchy. 1993

187

