
Maintaining Binding Freshness in the
Jgroup Dependable Naming Service

Hein Meling
meling@acm.org

Jo Andreas Lind
jalttojo@hotmail.com

Henning Hommeland
he-homm@online.no

Department of Electrical and Computer Engineering
Stavanger University College
N-4068 Stavanger, Norway

Abstract
In this paper, we discuss issues related to maintaining consistency (and
freshness) between the dynamic membership of a replicated server, and its
representation in a naming service storage. We propose two solutions based
on leasing and notification, and evaluate the suitability of each solution based
on measurements of performance impact and failover delay. Furthermore,
we discuss several approaches to ensure that the dynamic membership of the
replicated server is also reflected (refreshed) in the client-side representation
of the server group membership.

1 Introduction
The increasing use of online services in our day-to-day activities has mandated that the
provided services remainavailableand that they perform their operationscorrectly. To
accomplish these goals, it is common toreplicate critical system components in such
a manner that certain functions are performed by multiple independent replicas. Given
that the number of simultaneous replica failures can be bounded, we can provide certain
guarantees concerning availability and correctness in our system. Physical distribution of
the replicas is an effective measure to render failures independent.

Distributed object-based middleware platforms such as CORBA [11], Java RMI [12],
Jini [1] and J2EE [13] hold the promise of simplifying network application complexity
and development effort. However, they remain unsuitable for implementing replication
since the required “one-to-many” interaction model among objects has to be simulated
through multiple one-to-one interactions. This not only increases application complexity,
but also degrades performance. To overcome this limitation, distributed objects may be
replaced by their natural extensiondistributed object groups[3, 5]. Clients interact with
an object group transparently through remote method invocations (RMI), as if it were a
single, non-replicated remote object. Global consistency of the object group is typically
guaranteed through agroup communication service[2].

Clearly all distributed middleware platforms must provide some means for clients to
obtain access to a remote server object. Typically this is accomplished using a naming
service, also referred to as a registry service [8]. The task of a naming service is to map a
textual service name to a remote object reference, that implements a service described by

the service name. The remote object reference, also called stub or proxy, can be used by
a client to access the service functionality implemented by the remote object.

Building a dependable distributed middleware platform requires also the naming
service to be fault tolerant, so as to ensure that clients can always access the service.
Several existing middleware platforms provide a dependable naming service, including
Jgroup [8] and Aroma [10]. However, none of these dependable naming services update
their database of object references in the presence of replica failures. Thus clients may
become unable to communicate with the service even though there are available replicas to
service client requests. Another, perhaps more important problem with current solutions,
is that the client-side proxy may not have the most current membership information. The
latter problem, will render failed server replicas visible to clients; an undesirable property
in a fault tolerant system in which failure transparency is an important goal.

This paper presents an extension to the Jgroup/ARM [9, 7] object group middleware
platform and its dependable naming service [8], for the purpose of maintaining freshness
of object references stored in the naming service database. Two distinct techniques are
proposed to solve this problem, one based on leasing and another based on notifications
from the Jgroup membership service. In addition we have implemented a combined
approach, gaining the benefits of both techniques. Furthermore, we present measurement
results providing indication of the imposed processing- and failover delay of each
individual technique. Finally, we propose several extensions to the client-side proxy
mechanism to circumvent the problem with obsolete membership information.

The rest of this paper is structured as follows. Section 2 gives an overview of the
Jgroup/ARM replication management framework, while in Section 2.1 the current Jgroup
dependable registry service is presented. Section 3 presents the suggested techniques for
maintaining binding freshness in the dependable registry, and in Section 4 we provide
measurement results and an informal evaluation of each technique. In Section 5 we
discuss the possible solutions to the client-side proxy freshness problem. Section 6
concludes the paper.

2 The Jgroup/ARM Dependable Computing Toolkit
Jgroup [9] is a novel object group-based middleware platform that integrates the Java
RMI and Jini distributed object models with object group technology and includes
numerous innovative features that make it suitable for developing modern network
applications. Jgroup promotesenvironment awarenessby exposing network effects to
applications that best know how to handle them. If they choose, operational objects
continue to be active even when they are partitioned from other group members. This
is in contrast to theprimary partition approach that hides network effects as much as
possible by limiting activity to a singleprimary partition while blocking objects in all
other partitions. In Jgroup, applications becomepartition-aware through views that
give consistent compositions of the object group within each partition. Application
semantics dictate how objects should behave in a particular view. Jgroup also includes
a state merging serviceas further support for partition-aware application development.
Reconciling the replicated application state when partitions merge is typically one of the
most difficult problems in developing applications to be deployed in partitionable systems.
While a general solution is highly application dependent and not always possible, Jgroup
simplifies this task by providing systematic support for certain stylized interactions that
frequently occur in solutions. Jgroup is unique in providing a uniform object-oriented
programming interface (based on RMI) to governall object interactions including those

within an object group as well as interactions with external objects. Other object group
systems typically provide an object-oriented interface only for interactions between object
groups and external objects, while intra group interactions are based on message passing.
This heterogeneity not only complicates application development, but also makes it
difficult to reason about the application as a whole using a single interaction paradigm.

Most object group systems, including Jgroup, do not include mechanisms for
distributing replicas to hosts or for recovering from replica failures. Yet, these
mechanisms are essential for satisfying application dependability requirements such as
maintaining a fixed redundancy level. ARM [6, 7] is a replicated dependability manager
that is built on top of Jgroup and augments it with mechanisms for the automatic
management of complex applications based on object groups. ARM provides a simple
interface through which a management client can install and remove object groups within
the distributed system. Once installed, an object group becomes an “autonomous”
entity under the control of ARM until it is explicitly removed. ARM handles both
replica distribution, according to an extensibledistribution policy, as well as replica
recovery, based on areplication policy. Both policies are group-specific, and this allows
the creation of object groups with varying dependability requirements and recovery
needs. The distribution scheme enables deployers to configure the set of hosts on
which replicas can be created. The choices included in a replication policies involve
choosing the types of faults to tolerate, the styles of replication to use and the degree
of redundancy to use, among other factors. The ARM implementation is based on a
correlation mechanism, whose task is to collect and interpret failure notifications from
the underlying group communication system. This information is used to trigger group-
specific recovery actions in order to reestablish system dependability properties after
failures. The properties of our framework as described above lead to what we call
“autonomous replication management”.

2.1 The Dependable Registry Service
When a client wants to communicate with a Java RMI server (or an object group), it needs
to obtain a reference (stub) to either the single server or the object group depending on
what kind of server the client is trying to access. In the case of Java RMI, the Java runtime
environment is bundled with a standard registry service calledrmiregistry. This registry
service is a simple repository facility that allows servers to advertise their availability, and
for clients to retrieve stubs for remote objects (servers). Unfortunately, thermiregistry
is not suitable for the distributed object group model. There are several reasons for this
incompatibility, as identified in [9]:

1. Thermiregistry constitutes a single point of failure.

2. It does not support binding multiple server references to a single service name, as
required by a object group system.

3. Only local servers are allowed to bind their stubs in thermiregistry.

To address these incompatibilities, Jgroup includes a dependable registry service [8, 9],
that can be used by servers to advertise their ability to provide a given service identified
by the service name. In addition, clients will be able to retrieve a group proxy for a given
service, allowing them to perform method invocations on the group of servers providing
that service. The dependable registry is designed as a replacement for thermiregistry,

and only minor modifications are required on both client and server side to adopt the
dependable registry. The dependable registry service is in essence an actively replicated
database, preventing the registry from being a single point of failure. The dependable
registry servers are replicated using Jgroup itself, and clients access the registry service
using external group method invocations. The database maintains mappings from service
name to the set of servers providing that particular service. Thus, each entry in the
database can be depicted as follows:

ServiceName → {S1, S2, . . . , Sn}

were S denotes a server, andn represents the number of servers registered under
ServiceName in the dependable registry, as providing the service associated with
ServiceName.

3 Maintaining Freshness in the Registry
The implementation of the Jgroup dependable registry as described in Section 2.1 lacks an
important property with respect to dependability, namely ensuring freshness of its content.
To better understand this problem, lets consider the following scenarios.

1. When a server wish to leave the server group, it will perform anunbind() invocation
against the dependable registry and then exit. In this case, the registry database is
updated accordingly, by removing the object reference for the server performing
theunbind().

2. However, if a server leaves the server group in an abnormal manner, such as a
crash or partitioning, it will be unable to perform theunbind() invocation. Thus,
rendering the registry database in an incorrect state with respect to available server
group members.

In the latter case, the dependable registry will continue to supply clients requesting a
reference for the server group, through thelookup() method, with a proxy that contain
servers that are no longer member of the group. In fact, the proxy may be completely
obsolete, when all servers in the group have crashed.

We can also describe the problem more formally. LetGA
x represent a group proxy

for group A as stored in the registry, and let the indexx denote a sequence number
for changes to the membership of groupA as stored in the registry. Currently, only
incremental changes to a group’s membership will be reflected in the registry, unless a
server voluntarily leaves the group. In the following we omit the group index, referring
only to groupA. Furthermore, letVy denote the group membership view, and index
y denotes the sequence number of views installed by the group. Using this notation,
we can illustrate the second scenario above in which a server crashes. After having
installed three server replicas we may have a group proxyG1 = {S1, S2, S3} and a
view V1 = {S1, S2, S3}. Now, let serverS2 fail by crashing or partitioning, leading
the Jgroup membership service to install a new viewV2 = {S1, S3}. Since the registry
will not be updated on the basis of such an event it is easy to see that the registry has
become inconsistent with respect to the actual situation sinceV2 6= G1, and will remain
inconsistent indefinitely. Furthermore, if new servers were to be started to replace failed
once, the number of members of the group proxy forGA would grow to become quite
large. Figure 1 illustrates the problem visually.

S2 S3S1

S3S1

S2
G1 S2 S3S1

Dependable
Registry

A= { }, ,

G1 S2 S3S1

Dependable
Registry

A= { }, ,

S2 S3S1

S30: bind()

G0 S1 S2

Client

G

V0

V1

V2

crashed1:

2: viewChange()

Discrepancy

Dependable
Registry

A= { , }

A

3: lookup()

Figure 1: Exemplification of the problem, in which the registry becomes inconsistent, and
a client obtains a group proxyGA

1 which is an incorrect representation of the actual group
membership.

To prevent clients from obtaining obsolete proxies from the dependable registry, we
provide two distinct techniques and one combined technique for ensuring freshness of the
registry content. The first two techniques are implemented as separate layers that must be
embedded within the server group protocol stack, while the combined approach use both
layers. A detailed description of the following techniques can be found in [4].

3.1 The Lease-based Refresh Technique
Our first solution to the problem is to use the well known concept of leasing. By leasing
we mean that each server’s object reference in the dependable registry is only valid for a
given amount of time called the lease time. When a server’s object reference has been in
the registry for a longer period of time than its lease time, it is considered a candidate for
removal from the registry database. To prevent such removal, the server has to periodically
renew its lease with the registry. The interval between these refresh invocations is referred
to as the refresh rate. It is possible to configure both theleaseTime and therefreshRate
of the leasing mechanism, through an XML based configuration file. This is similar to the
approach used in the Jini lookup service [1], except for the fact that Jini can only associate
a name with a single server.

LeaseLayer Implementation

The lease-based refresh technique is implemented as a server-side layer called
LeaseLayer. The layer contains a single thread that periodically performs arefresh()
invocation on the dependable registry. Therefresh() method is implemented in the
dependable registry, and simply updates the timestamp for the current server’s object

reference in the registry database. Figure 2 illustrate the workings of theLeaseLayer.

S3S1

S2

V1

V2

S2 S3S1

G2 S1 S3

G1 S2 S3S1

S2

crashed1:

2: viewChange()

0: refresh()

0: refresh()

0: refresh()

Dependable
Registry

A= { , }

expired

Dependable
Registry

A= { }, ,

3: refresh()

3: refresh()

4: leaseTime

Figure 2:LeaseLayer exemplified.S2 has crashed an is excluded by the registry since its
lease is not renewed.

3.2 The Notification Technique
The Jgroup group communication system provides a group membership service, and
servers that wish to receive notification of changes to the group’s composition, can indi-
cate this interest by implementing theviewChange() method of theMembershipListener.
The viewChange() method is used to notify group members of changes to the group’s
composition, for example when a server join or leave the group. Through this view change
mechanism, servers are informed of other servers in the group. This means that the servers
will at all times know about the existence of other servers in its group. Thus, the objective
of the notification technique is to exploit the view changes that occur within a group to
inform the dependable registry about changes in the group’s composition, and from that
information update the registry database.

NotifyLayer Implementation

The NotifyLayer is also implemented as a server-side protocol layer. Figure 3 illustrates
the workings of theNotifyLayer in a crash failure scenario. The layer intercepts
viewChange() invocations from the Jgroup membership service, and a single member (the
leader (S3)) of the group invokes theunbind() method, identifying the crashed member
to the dependable registry in case the new view represents a contraction of the group’s
membership.

3.3 Combining Notification and Leasing
TheNotifyLayer is by far the most interesting and elegant technique, but it has one major
flaw, namely the situation when there is only one remaining server in the object group. In
this case the last server will be unable to notify the registry when it fails. Using a hybrid
approach which combines theLeaseLayer and theNotifyLayer, in order to exploit the
advantages of both layers. The default for the hybrid approach is to use theNotifyLayer
(i.e., when#Servers > 1), and in the situation with only one (i.e., when#Servers = 1)

remaining server theLeaseLayer is activated. By doing this we will also diminish the
main drawback of leasing technique, namely the amount of generated network traffic,
since there is only one server that needs to perform arefresh() invocation. This hybrid
approach enable the registry to serve clients with correct group proxies in most situations.

Table 1 summaries our findings for theLeaseLayer, NotifyLayer and a hybrid
approach, and demonstrates the advantages of combining these layers. The first column
(Messages) refers to the amount network traffic generated, while the second column
(Detection Speed) refers to the expected time for the registry to become updated. The
third column (Single Member) refers to the registry’s ability to be consistent even after
the last member of a group has crashed.

Table 1: Comparing the three refresh approaches.
Messages Detection Speed Single Member

Lease - - +
Notify + + -

Combined + + +

4 Measurements and Evaluation
In this section we present measurement results and analysis of the two refresh techniques.
We are particularly interested in the failover delay and (processing) performance impact
of introducing these techniques into the server-side of the group members. We define
the failover delayto be the time between the actual failure of a server and the point at
which the registry returns to a correct state. In the case of using no refresh techniques,
the failover delay will be infinite; so it is obvious that any refresh technique will be an
improvement with respect to the failover delay. Therefore, it is also important to consider
the performance impact of the techniques used.

To conduct the various measurements presented below, we used a cluster of six
P4 2.2 GHz Linux machines interconnected over a 100Mbit LAN. We ran a series of
tests using areplicated echo serverand corresponding client. The echo server exports a
method that takes an array argument of varying size, and returns it. The performance

S2 S3S1

S3S1
G2 S1 S3

G1 S2 S3S1

S2

S23: unbind()

Dependable
Registry

A= { , }

Dependable
Registry

A= { }, ,
crashed1:

2: viewChange()

Figure 3:NotifyLayer exemplified.S3 is the group leader.

tests involved performing bothanycastand multicast invocations, and measuring the
invocation delay. We obtained average, maxima and minima values for the various tests.

4.1 LeaseLayer Performance Evaluation
Evaluating the performance of theLeaseLayer, we installed a four-way replicated echo
server and a single client continuously executing invocations towards the server group.
A single registry instance were running on a separate machine. Each echo server was
configured with theLeaseLayer, and numerous tests were run with refresh rates ranging
from 1 second to 180 seconds. We want to determine if leasing have an impact on the
performance of the servers, therefore we also ran the same tests with the echo server
configured without theLeaseLayer. To determine if there is a performance penalty of
using leasing in the given configuration, we examined the two extremes; (i) no leasing,
and (ii) a refresh rate of 1 second.

We expected that such a short refresh rate would impact the performance of the
server, but our comparison reveals no conclusive differences that indicates performance
deterioration. The reason for this is twofold: (i) the registry is not heavily loaded, and
thus can deal quickly withrefresh() invocations, and thus (ii) the servers spend very
little time dealing withrefresh() invocations. The latter means that the servers have
more than enough time to service clients, and thus we see no performance impact in our
measurements. Changing the server load by adding more clients, or by using a smaller
refresh rate, it is likely that there would be a difference between the two scenarios.

Note that our measurements does not explicitly attempt to measure the network traffic
generated by therefresh() invocations. However, our measurements would have implicitly
captured any network performance degradation, by therefresh() method taking longer to
complete.

Refresh Delay

The above results made us want to examine the joint processing and network delay
imposed by therefresh() method. Therefore, we setup an experiment with a single registry
and a single echo server configured with theLeaseLayer and a refresh rate of 1 second.
We measurement the delay of some 1000refresh() invocations, from ten independent runs
of the experiment.

The results of the experiment are shown in Table 2. As seen from the table, the
average time for a server to perform arefresh() against the registry is 6.957 milliseconds.
Considering that the refresh rate is as low as 1 second, the refresh processing takes up less
than one percent of the overall processing time of the server. That is, the percentage of
time spent performing refresh every interval is 0.691%, leaving 99.309% of the time for
processing client requests.

The results obtain in this experiment strengthens our conclusions from the first
experiment; the time it takes to perform arefresh() is very small relative to the total
time betweenrefresh() invocations. Note that in this experiment we used only a single
echo server. If we had used more servers, a possible bottleneck could have arose; the
dependable registry could have prolonged the refresh time if it had received simultaneous
refresh requests from several servers. This, however, is not very likely since the
probability that two or more servers will perform the refresh at the same time is very
small. From the servers perspective the inclusion of leasing does not add a significant
overhead, but from the perspective of the dependable registry in a system containing a
multitude of servers all employing leasing, the amount of traffic directed towards the

registry can grow significantly. But even if leasing imposes an extra burden on the registry
it is probable that the registry will be able to handle this extra burden. This is because the
service provided by the registry is not very processor intensive (it simply serves out group
proxies to clients). In conclusion, leasing in a Jgroup distributed system is feasible even
with a large number of servers.

Table 2: Measurement results; refresh delay and failover delay (in milliseconds).
Mean StdDev Variance Min Max

Refresh Delay (Lease) 6.957 0.265 0.070 6.515 7.455
Failover Delay (Notify) 86.675 87.753 7700.635 8.000 401.000

4.2 NotifyLayer Performance Evaluation
The nature of theNotifyLayer is completely different from theLeaseLayer in that it does
not do anything unless there is a change in the groups membership; that is the installation
of a new view. Thus, on the server-side there will not be any processing or networking
overhead during normal operation of theNotifyLayer.

4.3 NotifyLayer Failover Delay
The failover delay time portion is the time it takes for the registry to discover that a server
has crashed/partitioned, as illustrated in Figure 4. To determine the failover delay when
using theNotifyLayer we setup an experiment with a single registry and four echo servers.
We then simulated server crashes by manually stopping the server usingCTRL-C. Once
the available servers had been exhausted, the servers were brought back up again, and
the tests were repeated. The failover delay was measured by the leader of the group.
Note that, we were not able to measure the delay between the actual server crash and the
installation of the new view (e.g.,V1 in Figure 4). However, even without this part of the
failover delay, we obtained useful information concerning the delay involved. As shown
in Table 2, the failover delay is on average 86.7 ms, and thus only during this short period
may clients retrieve an incorrect proxy from the registry. Note that the failover delay is
highly variable with a large span from maxima (401 ms) to minima (8 ms), and a standard
deviation of 87.7. The reason for this variability is that the measurements were performed
with varying redundancy ranging from 4 to 1 group members. Thus, we expect that the
variability will increase even more when the redundancy is increased.

2S

0V 1V

crash start completed
unbind() unbind()

Failover delay

Figure 4: Illustrates the failover delay. Here we assume the initial viewV0 = {S1, S2, S3},
and that afterS2 has crashed a viewV1 = {S1, S3} is installed.

4.4 LeaseLayer Failover Delay
It is not easy to measure the failover delay for theLeaseLayer, since a crash may occur at
the start, in the middle or at the end of a refresh period; thus the amount time between the
crash and the correction of the registry table is quite variable. Therefore, we provide only
a expected average for the failover delay. For the purpose of this analysis, lets assume that
leaseTime = 2· refreshRate. This would yield an average failover delay of1

2
·leaseTime

= refreshRate. For comparisons sake, we can easily see that the failover delay for the
NotifyLayer is much smaller than theLeaseLayer, since it is dependent on the refresh rate.
That is, it would not be practical to use a refresh rate as low as 100 ms, in a large scale
system.

5 The Client-side Perspective
Even though the dependable registry is kept up-to-date using either theLeaseLayer or
NotifyLayer (or a combination), there is still the problem of clients. When a client perform
a lookup() against the dependable registry, it receives a group proxy containing a reference
for each of the servers in the group. If a server crash/partition, the registry will be updated
with the help ofLeaseLayer or NotifyLayer. However, the client-side proxy representation
of the group membership will become (partially) invalid since it is not updated in any way.

Since the membership information known to the client-side proxy may include both
failed and working servers, the proxy can hide the fact that some servers have failed by
using those that work. For each invocation, a single server is selected among the working
servers following a uniform distribution. Once a server failure is detected, that server is
marked as unavailable, and another server from the working set is selected in its place.

However, in the current release of Jgroup, the client-side proxy mechanism will throw
an exception to the client application once all group members have become unavailable,
rendering server failures visible to the client application. The latter is undesirable in a fault
tolerant system, in which failure transparency is an important goal. The solution to this
is simple enough, the client can contact the registry in order to obtain a fresh copy of the
group proxy. However, this operation should also be transparent to the client application
programmer. Various techniques could be used to obtain such failure transparency.

1. No client-side proxy refresh of membership information.This is the technique
currently used in the Jgroup client-side proxy that will expose server failures to
the client application. We list this technique as a comparative reference.

2. Periodic refresh.The client-side proxy must request a new group proxy from the
dependable registry at periodic intervals. This approach requires selecting a suitable
refresh rate interval. If set too low, it could potentially generate a lot of overhead
network traffic, and if set too high we run the risk that it is not updated often enough
to avoid exposing server failures to the client.

3. Refresh when all known group members have become unavailable.If the client-side
proxy is unable to connect to a server member, it will try to connect to each of the
other group members, until all members have been exhausted. That is, no more
live members are available using the current membership information known to the
proxy. Once this happens, obtain a new proxy from the dependable registry.

4. Refresh whenN of the known group members have become unavailable.If the
client-side proxy has tried and failed connecting toN servers, it requests a new
group proxy from the dependable registry.

5. Refresh when the client-side proxy detects a new server-side view.For each
invocation performed by a client, the server-side proxy attach its current view
identifier (viewId) together with the result of the invocation to the client-side proxy.
In this way, the client-side proxy is able to determine if it needs to contact the
dependable registry to obtain fresh group membership information.

Technique 2 is not really interesting since it is difficult to determine a suitable refresh
rate, and it is unlikely to scale well for a large number of clients. Technique 3 is a special
case of Technique 4, in whichN = all. The main difference between the last three
techniques is the time it takes the client-side proxy to return to a consistent state with
respect to the membership of the server group. This is not an issue concerning server
availability, but rather the ability of the client-side proxy to load balance its invocations
on all active servers, and not just the ones that are known to the clients. In all of the above
techniques, there will be a slight failover delay once a client-side proxy detects (during an
invocation) that a server has failed. However, in Technique 5 the time to detect a new view
is typically faster than the other techniques, since it will detect it as soon as it invokes a
working member of the group after a new view has been installed. The latter approach
may be combined with Technique 4 (e.g., forN = 1), to update the proxy also when a
failed server is detected before a new view.

Technique 5 in combination with Technique 4 is perhaps the most interesting, however
currently we have only implemented technique 3.

6 Conclusions
In this paper we have identified important limitations with existing dependable naming
service and client-side proxy implementations. In many server failure scenarios, these
limitations will exposed failures to the client application, an undesirable property in most
middleware frameworks.

We proposed two distinct techniques for maintaining freshness in a dependable
naming service and provide measurement results. Our analysis of the results indicate
that the performance impact and failover delay of the notification based approach is the
most efficient. When used in combination with the lease based approach we can also
recover from failure of the last member, and the additional performance impact of the
lease based approach will be limited only to a small period when the group consists of
only a single member.

Furthermore, we propose several techniques for ensuring client-side proxy freshness.
Currently, we have implemented only Technique 3, and this solves the client-side
proxy freshness issue. However, we conclude that a combination of Technique 4 and
Technique 5 is perhaps worth investigating, since it will have a shorter failover delay and
will always recover to a consistent state as long as there are more replicas available from
the client location.

References
[1] K. Arnold, B. O’Sullivan, R. Scheifler, J. Waldo, and A. Wollrath.The Jini Specification.

Addison-Wesley, 1999.

[2] G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifications: A
Comprehensive Study.ACM Computing Surveys, 33(4):1–43, Dec. 2001.

[3] G. Collson, J. Smalley, and G. Blair. The Design and Implementation of a Group Invocation
Facility in ANSA. Technical Report MPG-92-34, Distributed Multimedia Research Group,
Department of Computing, Lancaster University, Lancaster, UK, 1992.

[4] H. Hommeland and J. A. S. Lind. Maintaining Binding Freshness in a Dependable Naming
Service (in the Prescense of failures). Technical report, Department of Electrical and
Computer Engineering, Stavanger University College, Apr. 2003. Advisor: Hein Meling.

[5] S. Maffeis. The Object Group Design Pattern. InProc. of the 2nd Conf. on Object-Oriented
Technologies and Systems, Toronto, Canada, June 1996.

[6] H. Meling and B. E. Helvik. ARM: Autonomous Replication Management in Jgroup. In
Proc. of the 4th European Research Seminar on Advances in Distributed Systems, Bertinoro,
Italy, May 2001.

[7] H. Meling, A. Montresor,Ö. Babaŏglu, and B. E. Helvik. Jgroup/ARM: A Distributed Object
Group Platform with Autonomous Replication Management for Dependable Computing.
Technical Report UBLCS-2002-12, Dept. of Computer Science, University of Bologna, Oct.
2002.

[8] A. Montresor. A Dependable Registry Service for the Jgroup Distributed Object Model. In
Proc. of the 3rd European Research Seminar on Advances in Distributed Systems, Madeira,
Portugal, Apr. 1999.

[9] A. Montresor. System Support for Programming Object-Oriented Dependable Applications
in Partitionable Systems. PhD thesis, Dept. of Computer Science, University of Bologna,
Feb. 2000.

[10] N. Narasimhan. Transparent Fault Tolerance for Java Remote Method Invocation. PhD
thesis, University of California, Santa Barbara, June 2001.

[11] OMG. The Common Object Request Broker: Architecture and Specification, Rev. 2.3. Object
Management Group, Framingham, MA, June 1999.

[12] Sun Microsystems, Mountain View, CA.Java Remote Method Invocation Specification, Rev.
1.7, Dec. 1999.

[13] Sun Microsystems, Mountain View, CA.Enterprise JavaBeans Specification, Version 2.0,
Aug. 2001.

