A Proof Environment for Partial Specificationsin OUN

Einar Broch Johnsen and Olaf Owe
Department of infor matics, University of Oslo

Abstract

Aspect-oriented specifications and formal reasoning are often advocated for the
design of complex, distributed systems. Commonly used design notations seem to
lack the reasoning control of formal languages. OUN is an object-oriented language
with facilitiesfor aspect-oriented specifications through multiple viewpointsand for
reasoning control. However, to be of practical use the language needs tool support.
In this paper, we propose a formalization of aspects of the observable behavior of
objects, using the PV S proof system. The formalism is extended with constructsto
provide reasoning support for OUN specifications.

1 Introduction

The Oslo University Notation (OUN) is a high-level object-oriented design language
specialized towards the development of open distributed systems. The language is
designed in a restricted way so that reasoning control is based on static typing and
proofs, and the generation of verification conditions is based on static analysis of pieces
of programs or specification units [5]. In the language, different behavioral aspects of
an object can be specified using OUN interfaces. An object may support a number of
interfaces and this number may change dynamically. The semantics of the language is
based on traces. Requirement specifications of interfaces are given as assumptions and
invariants, by means of first-order predicates on traces. In this paper, we develop a proof
environment for OUN specifications in the Prototype Verification System (PVS) [8].

We consider objects running in parallel and communicating by remote method calls. The
observable behavior of an object at apoint in time is given by its trace, i.e. the sequence
of observable communication events, reflecting remote method calls both to and from
the current object. At any given time, the number of such calls will be finite, so the
trace is aso finite. The set of traces that reflect al possible runs of an object, give us
an observational description of the object. Internal activity is not captured directly in the
observable communication traces, but such internal activity may manifest itself at the
level of communication traces as non-deterministic choices, i.e. atrace may have several
extensionsin the trace set.

A specification of an object includes an aphabet of communication events and a set of
traces over this alphabet. When an object is specified at a given level of abstraction, some
lower level details concerning its behavior are ignored in order to focus the specification
on a relevant aspect of the behavior of the object. By generalization, specifications can

describe the behavior of a component that encapsulates several objects. In particular, the
composition of two specificationsisitself a specification.

There may be severa specifications of the same object, describing communication
traces built over different subsets of the alphabet of that object. These so-called partial
specifications correspond to different roles of the object. We employ a refinement
relation that allows alphabet expansion, introduced in OUN [2, 5]. Thus, various (partial)
specifications of an object may have acommon refinement, although their alphabets differ.

PVS is a specification and verification environment with mechanized support for formal
verification in a specification language based on higher-order logic [8]. The language
has a rich type system including predicate subtypes and dependent types, as well as type
constructors for functions, tuples, records and abstract datatypes[7]. PVS specifications
are organized in theories. Modularity and reuse are supported by means of parameterized
theories. PV'S has a powerful verification tool which uses decision procedures to simplify
and discharge proofs, and provides proof techniques such as induction, rewrite, backward
and forward proofs, and proof by cases for interactive user intervention.

In this paper, a PV'S proof environment is proposed for aspect-oriented object specifica-
tions based on finite communication traces. The proof environment is then extended with
the syntactic sugaring of OUN, and we show by examples how OUN specifications can
betrandated in afairly straightforward manner into PV S theories. The proof environment
gives machine support for formal reasoning about OUN specifications. For brevity, only
OUN interfaces are discussed here, other constructs such as contracts are treated in an
extended version of this paper [4].

2 Finite Sequencesin PVS

In this section, we develop a theory for finite sequences in PVS. The sequences are
parameterized over some type T, to be defined later. The finite sequences over T are
defined as an abstract datatype in PVS.

seq[T: TYPE]: DATATYPE
BEG N
enpty: enpty?
addr(lr: seq, rt: T): nonenpty?
END seq
This definition gives us selector functions| r and rt aswell asidentifiersenpt y? and
nonenpt y? and constructorsenpt y and addr . Several properties of abstract datatypes
are available to the user, constructed by the PV S theorem prover itself [6], such as

FORALL (t: (nonenpty?)): addr(lr(t), rt(t)) =1t
Functions on the finite sequences can be defined by induction over the constructors of the

abstract datatype. Let | engt h be a predicate on sequences defined in this manner. The
concatenation of two sequences is defined by a predicate

conc(s, t: seq[T]): RECURSIVE seq[T] =
CASES t OF enpty: s, addr(tl, x): addr(conc(s, t1l), x) ENDCASES
MEASURE | engt h(t)
Notice the definition by cases construct and the measure, which generates TCC's (type

correctness conditions, see[8]) to guarantee that the definition iswell-founded. The length
of a sequence is used as a measure in recursive definitions. Finite sequences can be

extended at either end. Define by addl the complementary constructor to addr , with
selectors |t and rr. We need projectionsr estri ct and hi de on the sequences of
type T to restrict the sequences to subtypesof T. Thefunctionr est ri ct isdefined as
restrict(s: seq[T], a: set[T]): RECURSIVE seq[T] =
CASES s
OF enpty: enpty,
addr(t, x): IF nmenber(x, a) THEN addr(restrict(t, a), X)
ELSE restrict(t, a) ENDF
ENDCASES
MEASURE | engt h(s)
We define a prefix ordering on sequences:
ord(s, t: seq[T]): bool = EXISTS (u: seq[T]): conc(s, u) =t
The abstract datatype construct of PVS gives us a notion of equality, and we can prove
properties of equality and distribution for the defined functions, for instance
Restri ct Hi del nt er change: LEMVA
FORALL (t: seq[T], sl, s2: set[T]):
enpty?(intersection(sl, s2)) AND restrict(t, union(sl, s2)) =t
=> restrict(t, sl) = hide(t, s2)

3 Encoding Partial Specifications

Specifications in OUN consist of behavioral constraints on communication patterns
between object identifiers. When aspects of objects are specified, there may be several
specifications of the same object identifier. In this section, we propose PVS constructs
for the basic notions of aspect-oriented specifications with refinement and composition,
using finite communication traces. Then we present restrictions to obtain a compositional
refinement property for the formalism, following previous work [3].

A communication event in our setting is a structured event reflecting a remote method
call from one object to another. Let Cbj ect and Met hod be typesin PVS. Events are
defined as structured triples that consist of two object identifiers and a method name. For
structured triples, we use the PV S record type:

Event: TYPE = [# caller: Object, to: Cbject, nane: Mthod #]

Thefields of thetriple are labeled cal | er, t 0, and nane, respectively. These are used
to access the different fields; if e isan event, name(e) accesses its method name.

Prefix closed sets of communication traces correspond to safety specifications[1]. Define

prefixclosure: [set[seq[Event]] -> bool] =
(LAMBDA (s: set[seq[Event]]):
FORALL (t: seq[Event]): nenber(enpty, s) AND
((nonenpty?(t) AND nenber(t, s)) => nenber(lr(t), s)))
Consider a record type Tri pl e, which consists of the fields al pha: set [Event],
traces: (prefixcl osure),andobj: set[Obj ects].By(prefixclosure),
we denote the subtype of set [seq[Event]] which satisfiesthe prefix closure predic-
ate. Now, aspecification isasubset of Tr i pl e, defined asfollows:
Speci fication: TYPE =
{x: Triple | nonenpty?(obj(x)) AND
(FORALL (m Event): nenber(m al pha(x)) =>
(menber (caller(m, obj(x)) XOR nember(to(m, obj(x))))}

Internal communication between the objects of a specification is not reflected in its
alphabet. We call a specification I' an interface specificationif obj (') issingleton.

OUN offers a notion of refinement with alphabet expansion, which is particularly
suitable for aspect-oriented specifications, as the relation alows multiple inheritance
of specifications through projection on aphabets. Thus, we can join different aspects
of an object through refinement. For a discussion of refinement for aspect-oriented
specifications using this formalism, see [3]. Refinement for specifications is defined as
refines(S1, S2: Specification): bool =

subset ?(al pha(S2), al pha(S1)) AND subset ?(obj(S2), obj(S1))

AND (FORALL (t: seq[Event]): nenber(t, traces(Sl)) =>

nmenmber (restrict(t, alpha(S2)), traces(S2)))

Composition encapsul ates object identifiers, hiding internal communication events. For a
set of objects, the internal communication events are given by afunctioni nt , defined as
int(O.set: set[bject]): set[Event] =
{x: Event | nmenber(to(x), O_set) AND nenber(caller(x), O set)}
Define composition of specifications by hiding internal communication and by projection
on the traces of the components:
conp(S1l, S2: Specification): Specification =
(# al pha := {x: Event
nenber (x, difference(union(al pha(S1), al pha(S2)),
i nt (uni on(obj (S1), obj(S2)))))},
traces := {t: seq[Event] | restrict(t, alpha) =t AND
(EXI STS (t1: seq[Event]):
restrict(tl, union(al pha(Sl), alpha(S2))) =1t1
AND t = hide(tl, int(union(obj(S1), obj(S2))))
AND nenber(restrict(tl, alpha(Sl)), traces(Sl))
AND nenber(restrict(tl, alpha(S2)), traces(S2)))},
obj := union(obj (S1), obj(S2)) #)
Due to the aspect-oriented specification style of OUN, a communication event may be
part of several specifications, either as interna or in the observable alphabet of the
specifications. Define a predicate conposabl e on specifications:
conposabl e(sl, s2: Specification): bool =
enpty?(intersection(al pha(sl), int(obj(s2)))) AND
enpty?(intersection(al pha(s2), int(obj(sl))))
Commutativity and associativity of composition holds for composable specifications. In
a refinement step, new object identifiers can be introduced in a specification. When we
refine a specification that is part of a composition, the new objects may interfere with the
behavior of the other specification. Thisdifficulty isavoided by apr oper ness criterion:
proper(sl, s2, s3: Specification): bool =
enpty?(intersection({x: Event |
(menmber (to(x), obj (s1)) OR nenber(caller(x), obj(sl)))
AND NOT (nenber(to(x), obj(s2)))
AND NOT (nmenber(caller(x), obj(s2)))},
al pha(s3)))
We can now state and prove the following compositional refinement property in PVS:

Speci fi cati onConpRef: LEMVA
FORALL (x, vy, z: Specification):
(refines(x, y) AND proper(x, y, z) AND conposabl e(x, z))
=> refines(conmp(x, z), conmp(y, z))

4 OUN Interface Declarations

In this section, we briefly present a syntax for OUN interfaces. For a motivational
discussion of the language, the reader is referred to [5]. Objects support behavioral
interfaces that correspond to different roles. Different objects may have the same role,
so interfaces are declared independently of their objects and objects that support the same
interfaces can be used in the same places.

4.1 Asynchronous Communication by Remote Method Calls

In distributed systems, communication between objects is asynchronous. Hence, in the
language, each remote method call is represented by two distinct events in the traces,
referred to as the initiation and the completion of the call, respectively. In OUN, events
contain information about input and output values as well as about the kind of event we
are dealing with, either initiation or completion, the identities of the calling and receiving
objects, and the method name. In the syntax, an operation is declared as

opr m(in p1:Ty,..., pi:Ti;out Pj:Tj,..., Pn: Tn).

If an object 01 offers this method m to its environment, and m is invoked by another
object 0z, thisremote call isfirst reflected in the traces by an initiation event, represented
as 0p—01.m(py, ..., pi). If the call is answered by o1, thisis reflected by a completion
event in the traces, denoted 02«+—01.M(P1,.. ., Pi; Pj,---,Pn). The semicolon separates
input and output values. For methods without explicit output values, there are no values
after the semicolon. As communication events reflect remote method calls, we refer to
02 as the caller and to o1 as the receiver of both o,—o01.m(...) and 0p«—o01.m(...).
Let caller (o) be the set of events corresponding to remote calls that are called by an
object 0 and receiver (0) the corresponding events received by o. Internal activity in the
objects are not directly observable. Hence, caller (o) Nreceiver (0) = 0. Global traces
are communication histories for the entire system we consider, whereas local traces are
restricted to a subset of the communication events. As communication is asynchronous,
the calling object need not wait for the completion of a call. Hence, in the (local) traces,
other communication events may occur between the initiation and completion events
of a call. Synchronous communication can be specified explicitly by a special event
Op—01.M(P1,..., Pi; Pj, - - -, Pn), here the completion immediately follows the initiation.

4.2 The Syntax and Semantics of Interfaces

An interface contains syntactic definitions of operations and semantic requirement
specifications. The semantic requirement has the form of an assumption invariant
specification: The invariant is guaranteed to hold when the assumption is respected by
the objects in the communication environment.

At the semantic level, objects are typed by interfaces. The semantic requirements of an
interface rely on the available communication history of an object offering the interface
up to the present point in time; they are predicates on the finite traces. Let F,F1,. .., Fy,
and G represent interfaces. An interface declaration will then have the following general
form:

interface F (<parameters>)
inheritsF,F,....Fy
begin
with x.G
opr my(...)

opr my(...)

asm <formula on local trace restricted to a calling object>

inv <formula on local trace>
where <auxiliary function definitions>
end
The parameter list contains values (typed by datatypes) or objects (typed by interfaces)
that describe the minimal environment needed by an object offering the interface at the
point of creation. Thewith clause of the interface F is used to restrict the communication
environment of an object o offering F, to objects offering some interface G. Thus, 0 has
knowledge of some methods of the calling object, as specified in the interface G. When no
such knowledge is required and accessis open to all objectsin the environment, the with
clause isomitted. An interface declared in awith clause isreferred to as a cointerface.

In OUN, o:F denotes an object o which offers an interface F (as above, but for
given parameters) to the environment. For o:F, we derive an aphabet a(o:F) of
communication events from the syntactic declaration of F. To each method, associate
initiation and a completion events, ranging over possible input and output values and
possible callers. The aphabets of objects included as parameters to F, are included in
a(o:F). If F has a cointerface G, we include the events of a(0": G) that are available to
0, i.e. [Uyconj ect a(0:G)Ncaller(0)] C a(o:F). The aphabet of o:F is maximal,
including all possible callers, athough the communication environment of an object
actually evolves over time, due to information about calling objects and object identifiers
transmitted as input values to method calls.

The assumption predicate is a requirement on the environment, expected to hold for
local traces restricted to one caller at a time. Hence, in the declaration of an interface,
the assumption predicate ranges over traces as well as calling and receiving objects (of
the methods declared in the interface). Since assumptions are the responsibility of the
environment, these are only expected to hold for traces that end with input to the object
offering the interface.

Inputs to an object o are either events o’ —o.m(...) or events o«0o’.m(...), reflecting
initiations of calls to methods of o or answers to calls by o to methods of objectsin the
environment. Let ing(h) denote a trace h where rt(h) is hidden (recursively) if it is not
an input to o. Outputs are either events o’<—o.m(...) or events o—ao’.m(...), reflecting
completions of calls to methods of o or initiations of calls by o to methods of objectsin
the environment. Denote by out,(h) the corresponding predicate for output traces.

Given an assumption predicate A in an interface F, offered by an object o, we define
AN(h,0) = V¥x # 0: A(ing(h/a(0:F)/x),0,X),

and a similar predicate A°%(h,0), hiding inputs to o by oute(h). When we specify an
assumption A in an interface offered by an object o, A'""(h,0) is assumed to hold. Now
define 1°(h) for invariant predicates | as:

1°'(h,0) = I (outo(h/a(0:F))).

The invariant of a specification is guaranteed to hold for the object offering the interface,
so it is a predicate on the entire (local) trace. The (local) trace of o: F isthe global trace
of the system we consider, restricted to a(o:F). Hence, by an invariant | declared in
an interface, we expect 1°*(h,0) to hold. If the assumption predicate is omitted in the
declaration of an interface, it is the same predicate as the invariant. If auxiliary functions
or predicates are needed for specification purposes, these may be defined following the
where keyword.

Traces are used explicitly in interface declarations to determine behavior at specific points
in time. The behavior of an object offering the interface is then described by aset T of
possible (finite) traces. For every trace h in the set T, all prefixes of h represent prior
points in the life of the object and must also belong to T, so T is prefix closed and
represents a safety specification in the sense of Alpern and Schneider [1].

When an interface F inherits interfaces Fy,...,Fn (1 < i < m) and o offers F to the
environment, the alphabet of o:F; isincluded in a(o:F). For the traces, inclusion is by
projection. Thetrace set T (0:F) of o: F, where A and | are the assumption and invariant
predicates of F, is then the prefix closure of

_ _ _ h/a(o:F) e T (0:F)A...Ah/a(o:Fy) €T (0:Fp)
T (0:7) = {n: senfalo:r)] | VRIS S TR ol 2

We do not want the output from the object to violate the assumption of future extensions
to atrace, so semantically A% (h, 0) isawaysincluded as part of the invariant.

5 Embedding OUN Specificationsin PVS

In this section, aricher theory for communication events is introduced in PV S to reflect
remote method callsin OUN. The OUN notion of atrace isformalized, and a framework
for representing interface declarationsin PV Sisintroduced. We discuss the representation
of interface specifications and of objects offering OUN interfaces.

5.1 Communication Events for Remote Method Calls

The Event type of Section 3 needsto be modified to include all the information of OUN
events. To commence, let | nt er f ace be atype for interface namesin PVS. A typeis
introduced for different kinds of events, i.e. initiation and completion, Evt Ki nd: TYPE
= {i,c}.A uniformtypeisused for the possible data values transmitted as either input
or output values to the communication events. Here, transmitted data values are either
natural numbers or objects typed by interface. The (digoint) union of two types cannot be
constructed directly in PVS[6]. Instead, they are wrapped into a new type, using different
constructors and identifiers for the different subtypes. Define an abstract datatype Dat a:
Dat a: DATATYPE
BEG N
nunmb(x: nat): nunb?
ref(x: Object, y: Interface): ref?
END Dat a
The modified type Event isa subtype of

[# caller: Object, to: Object, nane: Method, kind: EvtKind,
input: list[Data], output: |ist[Data] #]

such that the list of output data is null for initiations and that the caller and receiver of
an event are different objects. Checking that the number and types of input as well as
output values are correct for any actua method declaration is implicit in the aphabet
declarations. All the results of Section 3 hold for the modified Event type.

5.2 ATheory of Traces

For OUN traces, there is an underlying assumption that every completion in a trace is
preceded by a corresponding initiation. To any event m we can construct the initiation
eventi ni t () that correspondsto m (If ki nd(m) =i, theni ni t (M) =m) Say that a
set of eventsis balanced if there is an initiation event in the set that corresponds to every
completion event in the set. Balanced sets of events satisfy the following predicate:

bal anced?(s: set[Event]): bool =
(FORALL (m Event):
kind(m = c AND nenber(m s) => nenber(init(m, s))
A sequence h over a set of events Sis causal if, for every balanced subset of S, initiation
events occur more often than not in all prefixes of the trace, formalized by

causal (tr: seq[Event]): bool =
FORALL (s: set[Event]):
bal anced?(s) => dom(restrict(tr, s), {x: Event | kind(x) =i})
where the domination predicate don(t , s) statesthat eventsfrom the set s occur more
often than not as one moves from left to right in the sequence t . Note that for every
completion event e occurring in atrace, causality impliesthat the initiation corresponding
to that termination has aready occurred, asthe set {e,i ni t (€) } isbalanced.

Define atype Tr ace to represent OUN traces, the causal subtype of Seq[Event], as
follows:

Trace: TYPE = (causal)

The empty sequence satisfies the causality predicate, so it inhabits Tr ace. The largest
input and output prefixes are defined by recursion and denoted i n_prefi x and
out _prefi x, respectively.

5.3 Objectstyped by Interfaces

An object o that offers an interface F to its environment has a defined alphabet a(o:F)
and a defined set of traces T (0:F). We can therefore interpret o:F as an interface
specification in the sense of Section 3. Whereas the alphabet may be trandlated into a
PV S set of eventsin afairly straightforward manner (provided that al inherited interfaces
and their cointerfaces are already defined), the trandation of the trace set depends upon
our ability to represent the assumption and invariant predicates in PVS. In this section,
we show how OUN specifications can be trandated into PVS, given a representation
of the assumption and invariant predicates. First, remark that the alphabet of an OUN
specification is balanced, which is helpful for the consideration of the traces. An OUN
specification is defined as the corresponding subtype of Speci fi cati on:

OUNspec: TYPE = {s: Specification | bal anced?(al pha(s))}
We now define the types for assumption and invariant predicates as
AsnPred: TYPE = [Trace, Object, hject -> bool]

InvPred: TYPE = [Trace, Object -> bool]

Furthermore, we want these predicates to be true for the empty trace. For each inherited
interface, we assume that the alphabet is included by construction. The traces of the new
interface must belong to the trace set of an inherited interface, after appropriate restriction.
Thisrequirement is defined as a predicate on traces.

i nheritanceReq(h: Trace, Interfaces: set[OUNspec]): bool =
FORALL (s: OUNspec): nenber(s, Interfaces) =>
menber (restrict(h, al pha(s)), traces(s))

Using this requirement and the assumption and invariant predicates, the following
predicate is constructed on traces:

tracepred(h: Trace, Asm AsnPred, Inv: InvPred, O bject,
I nherited: set[OUNspec]): bool =
((FORALL (x: Object): NOT (x = O => Asn(in_prefix(h, O, O x))
=> (Inv(out _prefix(h, O, O
AND (FORALL (x: Object):
NOT (x = O => Asn(out_prefix(h, O, O x))))
AND i nheritanceReq(h, Inherited)
The trace set of 0: F can then be represented as the set of traces h such that all prefixes of
h satisfy the predicate above:

Asnml nvTraceSet (a: (bal anced?), Asm AsnPred, Inv: |nvPred,
O bject, Inhtd: set[OUNspec]): set[Trace] =
{h: Trace | restrict(h, a) = h AND
(FORALL (pfix: Trace):
(ord(pfix, h) => tracepred(pfix, Asm Inv, O Inhtd)))}
These trace sets should be prefix closed. In PVS, we state and prove the following lemma:

Prefixcl osureLenma: LEMVA
FORALL (a: (bal anced?), Asm AsnPred, Inv: InvPred, O bject,
I nherited: set[OUNspec]):
prefixclosure((AsmnvTraceSet(a, Asm Inv, O Inherited)))

An interface F that has not been associated with a particular object identifier, can be
represented by the union of all (possible) objects offering F. Thus, F is represented by

the specification
(Object, U a(o:F), U T (0:F)).
0:Object 0:Object
With this representation of interfaces, we can reason about refinement and composition

directly, even before it is decided which objects shall actually offer an interface. Remark
that other parameters to interface declarations can be treated in the same manner.

6 A Theory for Graphically Oriented Specifications

A convenient predicate for safety specifications is the predicate that defines prefixes of
regular expressions, because the set defined by such a predicate is prefix closed. A theory
for such predicates is now introduced and will be used in the examples of Section 7 in
order to express assumption and invariant predicates. Regular expressions can be defined
as an abstract datatype in PVS, parameterized by atype T:

reg[T: TYPE]: DATATYPE
BEG N

renpty: renpty?

single(elt: T): single?
AND(fst: reg, snd:. reg): and?
OR(Ift: reg, rgt: reg): or?
star(body: reg): star?
END reg
We want to define constructively apredicate pr s(t, exp) whichistrueif thetracet is
a prefix of atrace described by the regular expression exp. To represent error situations
in the recursion, the regular expressions are wrapped into another datatype:
ereg[T: TYPE]: DATATYPE
BEG N
okreg(rexp: reg): okreg?
enptyreqg: enptyreg?
nonat chreg: nomat chreg?
END ereg
We can then define the function pr s asfollows:
prs(s: seq, e: reg): RECURSIVE bool =
CASES s
OF enpty: TRUE,
addr(qg, y): LET z = 1t(s), g=rr(s), f = pop(z, e) IN
| F enptyreg?(f) OR nomatchreg?(f)
THEN FALSE ELSE prs(q, rexp(f))
ENDI F
ENDCASES
MEASURE | engt h(s)
where pop(z, e) returns an element of type er eg, and in the case of success, a new
regular expression where the element matching z has been removed (from the left). The
pr s predicate gives agraphical specification style, as demonstrated by its prefix closure:
PrefixLemma: LEMVA
FORALL (s,t:seq, r:reg): (ord(s,t) and prs(t,r)) => prs(s,r)

7 Examples

We derive PV'S specifications from two OUN interfaces Writer and ReaderWriter, that
describe an object controlling read and write access to some shared data, following [2].
For Writer, access is restricted so that only one object in the environment may perform
write operations at the time. The interface ReaderWriter aso allows concurrent read
operations. In PVS, we prove that ReaderWriter refinesWriter.

7.1 A Writer Interfacein PVS

The Writer interface limits write access to one object at the time. A calling object must
first invoke amethod Open_writein order to obtain write access. To return access control,
the calling object invokes the method Close_write. In OUN, the Writer interface can be
declared asfollows:

interface Writer [T : Data-type]
begin

opr Open_write()

opr Write(d: T)

opr Close write()
asm A(h,0,x) = h prs («.open_write —.write* <.close write)*
inv 1 (h,0) = (h/«<) prs(+.open_write —.write* «.close_write)*
end

In PVS, let object have type Object and let Open_wite, Wite, and
Cl ose_writ e beof type Met hod. Assume that obj ect supportsWriter, and define
Al phaWof type (bal anced?) to be the events with these method names and receiver
obj ect .

The assumption and invariant predicates of Writer consider only the name and kind of the
communication events, ignoring the object identities of the caller and receiver, so define a
type Abst r act Event that only includes these fields, import the regular expressions
over this type into the current theory, and define a function | i ft seq that turns a
trace into a sequence of Abst r act Event . The assumption and invariant predicates are
similar, except that the invariant only considers completion events. It can be defined as

InvWiter: InvPred =
(LAMBDA ((tr: Trace), (O Object)):
prs(liftseq(restrict_kind(tr, c)),
AND(AND(si ngl e((# nane := Open_write, kind :=c #)),
single((# nanme := Wite, kind :=c¢c #))),
single((# nane := Close_wite, kind :=c¢c #)))))
Thetrace set Tr acesWcan be obtained by Asm nvTr aceSet , and we get:
bj ect W QOUNspec = (# al pha: = Al phaW traces: = (TracesW,
obj : = singl eton(object) #)

7.2 A ReaderWriter Interfacein PVS

The ReaderWriter interface allows concurrent read access but only sequential write
access. In addition, an object can perform read operations when granted write access
to the shared data. The methods and behavior of Writer are inherited.

interface ReaderWriter [T : Data-type]
inheritsWriter[T]
begin
opr Open_read()
opr Read(outd: T)
opr Close read()
asm A(h,0,X) = h prs («.open_write <.write* «<.close_write
| «.open_read «.read* «.close read)*
inv l(h,0) =4(h/ <—.open_read) — #(h/ «—.close read) =0
V §(h/ «—.open_write) —fi(h/ —.close_write) =0
end
In PVS, we import the theory for the Writer interface and declare Open_r ead, Read
and Cl ose_r ead to be of type Met hod. Then, construct a set of events Al phaR cor-
responding to these method names. The alphabet of ReaderWriter becomes Al phaRW
(bal anced?) = uni on(Al phaR, Al phaW . The assumption predicate AsnmRW
resembles the predicates of Wi t er . The invariant predicate | nvRWis defined as
InvVRW | nvPred =
(LAMBDA ((tr: Trace), (O bject)):
(length(restrict(tr, {e: Event | nane(e) = Open_read})) -

length(restrict(tr, {e: Event | name(e) = Close_read})) = 0)
OR
(length(restrict(tr, {e: Event | nane(e) = Open_wite})) -
length(restrict(tr, {e: Event | nane(e) = Cose_wite})) = 0))
The trace set Tr acesRWcan then be constructed from predicates AsnRWand | nvRW
but for thisinterface, we need to include the inherited specification:
TracesRW set[Trace] =
Asm nvTraceSet (Al phaRW AsnRW I nvRW object, singleton(ObjectW)
We get an OUN specification for the obj ect supporting the ReaderWriter interface,
which is denoted Cbj ect RW Finally, we can provein PV S that

RW ef i nesW LEMMA refines(ObjectRW ObjectW

8 Conclusion

For any practical purposes, a formal specification language needs support by a proof
environment in order to allow formal reasoning about specifications of some complexity.
In this paper, we present a PVS proof environment for a formalism for partial
object specifications. This formalism is shown to support compositional refinement of
specifications. We extend the proof environment with constructs to facilitate its use
as a formal reasoning environment for OUN, a formal specification language for the
development of open distributed systems.

The main difficulty associated with translating OUN specifications into the formalism
of the proof environment now arise from the representation of assumption and invariant
predicates. A theory for prefixes of regular expressions is added to the formalism as a
convenient way to define predicates, allowing more graphically oriented specifications.
We show by examples how some OUN interfaces can be trandlated into PVS, and aso
how refinement claims are represented and proved.

References

[1] B. Alpern and F. B. Schneider. Defining liveness. Information Processing L etters,
21(4):181-185, Oct. 1985.

[2] O.-J. Dahl and O. Owe. Forma methods and the RM-ODP. Technical Report 261,
Department of Informatics, University of Oslo, 1998.

[3] E. B. Johnsen. Composition and refinement for partia object specifications.
Submitted for publication, 2001.

[4] E. B. Johnsen and O. Owe. A PVS proof environment for OUN. Technical Report
295, Department of informatics, University of Oslo, 2001. The PVS theories are
availableathtt p: //www. i fi.uio.no/~einarj/QunPvs.tar. bz2.

[5] O. Owe and I. Ryl. A notation for combining formal reasoning, object orientation
and openness. Technical Report 278, Dept. of informatics, University of Oslo, 1999.

[6] S. Owreand N. Shankar. Abstract datatypesin PVS. Technical Report SRI-CSL-93-
9R, Computer Science Laboratory, SRI International, June 1997.

[7] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language
Reference. Computer Science Laboratory, SRI International, Sept. 1998.

[8] S.Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System Guide.
Computer Science Laboratory, SRI International, Sept. 1998.

