
A Proof Environment for Partial Specifications in OUN

Einar Broch Johnsen and Olaf Owe
Department of informatics, University of Oslo

Abstract

Aspect-oriented specifications and formal reasoning are often advocated for the
design of complex, distributed systems. Commonly used design notations seem to
lack the reasoning control of formal languages. OUN is an object-oriented language
with facilities for aspect-oriented specifications through multiple viewpoints and for
reasoning control. However, to be of practical use the language needs tool support.
In this paper, we propose a formalization of aspects of the observable behavior of
objects, using the PVS proof system. The formalism is extended with constructs to
provide reasoning support for OUN specifications.

1 Introduction

The Oslo University Notation (OUN) is a high-level object-oriented design language
specialized towards the development of open distributed systems. The language is
designed in a restricted way so that reasoning control is based on static typing and
proofs, and the generation of verification conditions is based on static analysis of pieces
of programs or specification units [5]. In the language, different behavioral aspects of
an object can be specified using OUN interfaces. An object may support a number of
interfaces and this number may change dynamically. The semantics of the language is
based on traces. Requirement specifications of interfaces are given as assumptions and
invariants, by means of first-order predicates on traces. In this paper, we develop a proof
environment for OUN specifications in the Prototype Verification System (PVS) [8].

We consider objects running in parallel and communicating by remote method calls. The
observable behavior of an object at a point in time is given by its trace, i.e. the sequence
of observable communication events, reflecting remote method calls both to and from
the current object. At any given time, the number of such calls will be finite, so the
trace is also finite. The set of traces that reflect all possible runs of an object, give us
an observational description of the object. Internal activity is not captured directly in the
observable communication traces, but such internal activity may manifest itself at the
level of communication traces as non-deterministic choices, i.e. a trace may have several
extensions in the trace set.

A specification of an object includes an alphabet of communication events and a set of
traces over this alphabet. When an object is specified at a given level of abstraction, some
lower level details concerning its behavior are ignored in order to focus the specification
on a relevant aspect of the behavior of the object. By generalization, specifications can



describe the behavior of a component that encapsulates several objects. In particular, the
composition of two specifications is itself a specification.

There may be several specifications of the same object, describing communication
traces built over different subsets of the alphabet of that object. These so-called partial
specifications correspond to different roles of the object. We employ a refinement
relation that allows alphabet expansion, introduced in OUN [2, 5]. Thus, various (partial)
specifications of an object may have a common refinement, although their alphabets differ.

PVS is a specification and verification environment with mechanized support for formal
verification in a specification language based on higher-order logic [8]. The language
has a rich type system including predicate subtypes and dependent types, as well as type
constructors for functions, tuples, records and abstract datatypes [7]. PVS specifications
are organized in theories. Modularity and reuse are supported by means of parameterized
theories. PVS has a powerful verification tool which uses decision procedures to simplify
and discharge proofs, and provides proof techniques such as induction, rewrite, backward
and forward proofs, and proof by cases for interactive user intervention.

In this paper, a PVS proof environment is proposed for aspect-oriented object specifica-
tions based on finite communication traces. The proof environment is then extended with
the syntactic sugaring of OUN, and we show by examples how OUN specifications can
be translated in a fairly straightforward manner into PVS theories. The proof environment
gives machine support for formal reasoning about OUN specifications. For brevity, only
OUN interfaces are discussed here, other constructs such as contracts are treated in an
extended version of this paper [4].

2 Finite Sequences in PVS

In this section, we develop a theory for finite sequences in PVS. The sequences are
parameterized over some type T , to be defined later. The finite sequences over T are
defined as an abstract datatype in PVS.

seq[T: TYPE]: DATATYPE
BEGIN
empty: empty?
addr(lr: seq, rt: T): nonempty?

END seq

This definition gives us selector functions lr and rt as well as identifiers empty? and
nonempty? and constructors empty and addr. Several properties of abstract datatypes
are available to the user, constructed by the PVS theorem prover itself [6], such as

FORALL (t: (nonempty?)): addr(lr(t), rt(t)) = t

Functions on the finite sequences can be defined by induction over the constructors of the
abstract datatype. Let length be a predicate on sequences defined in this manner. The
concatenation of two sequences is defined by a predicate

conc(s, t: seq[T]): RECURSIVE seq[T] =
CASES t OF empty: s, addr(t1, x): addr(conc(s, t1), x) ENDCASES
MEASURE length(t)

Notice the definition by cases construct and the measure, which generates TCC’s (type
correctness conditions, see [8]) to guarantee that the definition is well-founded. The length
of a sequence is used as a measure in recursive definitions. Finite sequences can be



extended at either end. Define by addl the complementary constructor to addr, with
selectors lt and rr. We need projections restrict and hide on the sequences of
type T to restrict the sequences to subtypes of T . The function restrict is defined as
restrict(s: seq[T], a: set[T]): RECURSIVE seq[T] =
CASES s
OF empty: empty,

addr(t, x): IF member(x, a) THEN addr(restrict(t, a), x)
ELSE restrict(t, a) ENDIF

ENDCASES
MEASURE length(s)

We define a prefix ordering on sequences:
ord(s, t: seq[T]): bool = EXISTS (u: seq[T]): conc(s, u) = t

The abstract datatype construct of PVS gives us a notion of equality, and we can prove
properties of equality and distribution for the defined functions, for instance

RestrictHideInterchange: LEMMA
FORALL (t: seq[T], s1, s2: set[T]):
empty?(intersection(s1, s2)) AND restrict(t, union(s1, s2)) = t
=> restrict(t, s1) = hide(t, s2)

3 Encoding Partial Specifications

Specifications in OUN consist of behavioral constraints on communication patterns
between object identifiers. When aspects of objects are specified, there may be several
specifications of the same object identifier. In this section, we propose PVS constructs
for the basic notions of aspect-oriented specifications with refinement and composition,
using finite communication traces. Then we present restrictions to obtain a compositional
refinement property for the formalism, following previous work [3].

A communication event in our setting is a structured event reflecting a remote method
call from one object to another. Let Object and Method be types in PVS. Events are
defined as structured triples that consist of two object identifiers and a method name. For
structured triples, we use the PVS record type:
Event: TYPE = [# caller: Object, to: Object, name: Method #]

The fields of the triple are labeled caller, to, and name, respectively. These are used
to access the different fields; if e is an event, name(e) accesses its method name.

Prefix closed sets of communication traces correspond to safety specifications [1]. Define
prefixclosure: [set[seq[Event]] -> bool] =
(LAMBDA (s: set[seq[Event]]):

FORALL (t: seq[Event]): member(empty, s) AND
((nonempty?(t) AND member(t, s)) => member(lr(t), s)))

Consider a record type Triple, which consists of the fields alpha:set[Event],
traces:(prefixclosure), and obj:set[Objects]. By (prefixclosure),
we denote the subtype of set[seq[Event]]which satisfies the prefix closure predic-
ate. Now, a specification is a subset of Triple, defined as follows:
Specification: TYPE =
{x: Triple | nonempty?(obj(x)) AND

(FORALL (m: Event): member(m, alpha(x)) =>
(member(caller(m), obj(x)) XOR member(to(m), obj(x))))}



Internal communication between the objects of a specification is not reflected in its
alphabet. We call a specification Γ an interface specification if obj(Γ) is singleton.

OUN offers a notion of refinement with alphabet expansion, which is particularly
suitable for aspect-oriented specifications, as the relation allows multiple inheritance
of specifications through projection on alphabets. Thus, we can join different aspects
of an object through refinement. For a discussion of refinement for aspect-oriented
specifications using this formalism, see [3]. Refinement for specifications is defined as
refines(S1, S2: Specification): bool =
subset?(alpha(S2), alpha(S1)) AND subset?(obj(S2), obj(S1))
AND (FORALL (t: seq[Event]): member(t, traces(S1)) =>

member(restrict(t, alpha(S2)), traces(S2)))

Composition encapsulates object identifiers, hiding internal communication events. For a
set of objects, the internal communication events are given by a function int, defined as
int(O_set: set[Object]): set[Event] =
{x: Event | member(to(x), O_set) AND member(caller(x), O_set)}

Define composition of specifications by hiding internal communication and by projection
on the traces of the components:
comp(S1, S2: Specification): Specification =
(# alpha := {x: Event |

member(x, difference(union(alpha(S1), alpha(S2)),
int(union(obj(S1), obj(S2)))))},

traces := {t: seq[Event] | restrict(t, alpha) = t AND
(EXISTS (t1: seq[Event]):
restrict(t1, union(alpha(S1), alpha(S2))) = t1
AND t = hide(t1, int(union(obj(S1), obj(S2))))
AND member(restrict(t1, alpha(S1)), traces(S1))
AND member(restrict(t1, alpha(S2)), traces(S2)))},

obj := union(obj(S1), obj(S2)) #)

Due to the aspect-oriented specification style of OUN, a communication event may be
part of several specifications, either as internal or in the observable alphabet of the
specifications. Define a predicate composable on specifications:
composable(s1, s2: Specification): bool =
empty?(intersection(alpha(s1), int(obj(s2)))) AND
empty?(intersection(alpha(s2), int(obj(s1))))

Commutativity and associativity of composition holds for composable specifications. In
a refinement step, new object identifiers can be introduced in a specification. When we
refine a specification that is part of a composition, the new objects may interfere with the
behavior of the other specification. This difficulty is avoided by a properness criterion:
proper(s1, s2, s3: Specification): bool =
empty?(intersection({x: Event |

(member(to(x),obj(s1)) OR member(caller(x), obj(s1)))
AND NOT (member(to(x), obj(s2)))
AND NOT (member(caller(x), obj(s2)))},

alpha(s3)))

We can now state and prove the following compositional refinement property in PVS:
SpecificationCompRef: LEMMA
FORALL (x, y, z: Specification):
(refines(x, y) AND proper(x, y, z) AND composable(x, z))
=> refines(comp(x, z), comp(y, z))



4 OUN Interface Declarations

In this section, we briefly present a syntax for OUN interfaces. For a motivational
discussion of the language, the reader is referred to [5]. Objects support behavioral
interfaces that correspond to different roles. Different objects may have the same role,
so interfaces are declared independently of their objects and objects that support the same
interfaces can be used in the same places.

4.1 Asynchronous Communication by Remote Method Calls

In distributed systems, communication between objects is asynchronous. Hence, in the
language, each remote method call is represented by two distinct events in the traces,
referred to as the initiation and the completion of the call, respectively. In OUN, events
contain information about input and output values as well as about the kind of event we
are dealing with, either initiation or completion, the identities of the calling and receiving
objects, and the method name. In the syntax, an operation is declared as

opr m(in p1:T1, . . . , pi:Ti;out p j:Tj, . . . , pn:Tn).

If an object o1 offers this method m to its environment, and m is invoked by another
object o2, this remote call is first reflected in the traces by an initiation event, represented
as o2→o1.m(p1, . . . , pi). If the call is answered by o1, this is reflected by a completion
event in the traces, denoted o2←o1.m(p1, . . . , pi; p j, . . . , pn). The semicolon separates
input and output values. For methods without explicit output values, there are no values
after the semicolon. As communication events reflect remote method calls, we refer to
o2 as the caller and to o1 as the receiver of both o2→o1.m(. . .) and o2←o1.m(. . .).
Let caller(o) be the set of events corresponding to remote calls that are called by an
object o and receiver(o) the corresponding events received by o. Internal activity in the
objects are not directly observable. Hence, caller(o)∩ receiver(o) = /0. Global traces
are communication histories for the entire system we consider, whereas local traces are
restricted to a subset of the communication events. As communication is asynchronous,
the calling object need not wait for the completion of a call. Hence, in the (local) traces,
other communication events may occur between the initiation and completion events
of a call. Synchronous communication can be specified explicitly by a special event
o2↔o1.m(p1, . . . , pi; p j, . . . , pn), here the completion immediately follows the initiation.

4.2 The Syntax and Semantics of Interfaces

An interface contains syntactic definitions of operations and semantic requirement
specifications. The semantic requirement has the form of an assumption invariant
specification: The invariant is guaranteed to hold when the assumption is respected by
the objects in the communication environment.

At the semantic level, objects are typed by interfaces. The semantic requirements of an
interface rely on the available communication history of an object offering the interface
up to the present point in time; they are predicates on the finite traces. Let F,F1, . . . ,Fm,
and G represent interfaces. An interface declaration will then have the following general
form:



interface F (<parameters>)
inherits F1,F2, . . . ,Fm

begin
with x:G

opr m1(. . .)
...

opr mn(. . .)
asm <formula on local trace restricted to a calling object>
inv <formula on local trace>

where <auxiliary function definitions>
end

The parameter list contains values (typed by datatypes) or objects (typed by interfaces)
that describe the minimal environment needed by an object offering the interface at the
point of creation. The with clause of the interface F is used to restrict the communication
environment of an object o offering F , to objects offering some interface G. Thus, o has
knowledge of some methods of the calling object, as specified in the interface G. When no
such knowledge is required and access is open to all objects in the environment, the with
clause is omitted. An interface declared in a with clause is referred to as a cointerface.

In OUN, o:F denotes an object o which offers an interface F (as above, but for
given parameters) to the environment. For o:F , we derive an alphabet α(o:F) of
communication events from the syntactic declaration of F . To each method, associate
initiation and a completion events, ranging over possible input and output values and
possible callers. The alphabets of objects included as parameters to F , are included in
α(o:F). If F has a cointerface G, we include the events of α(o′:G) that are available to
o, i.e. [

⋃
o′∈Objectα(o′:G)∩ caller(o)] ⊆ α(o:F). The alphabet of o:F is maximal,

including all possible callers, although the communication environment of an object
actually evolves over time, due to information about calling objects and object identifiers
transmitted as input values to method calls.

The assumption predicate is a requirement on the environment, expected to hold for
local traces restricted to one caller at a time. Hence, in the declaration of an interface,
the assumption predicate ranges over traces as well as calling and receiving objects (of
the methods declared in the interface). Since assumptions are the responsibility of the
environment, these are only expected to hold for traces that end with input to the object
offering the interface.

Inputs to an object o are either events o′→o.m(. . .) or events o←o′.m(. . .), reflecting
initiations of calls to methods of o or answers to calls by o to methods of objects in the
environment. Let ino(h) denote a trace h where rt(h) is hidden (recursively) if it is not
an input to o. Outputs are either events o′←o.m(. . .) or events o→o′.m(. . .), reflecting
completions of calls to methods of o or initiations of calls by o to methods of objects in
the environment. Denote by outo(h) the corresponding predicate for output traces.

Given an assumption predicate A in an interface F , offered by an object o, we define

Ain(h,o) = ∀x 	= o : A(ino(h/α(o:F)/x),o,x),

and a similar predicate Aout(h,o), hiding inputs to o by outo(h). When we specify an
assumption A in an interface offered by an object o, Ain(h,o) is assumed to hold. Now
define Iout(h) for invariant predicates I as:

Iout(h,o) = I(outo(h/α(o:F))).



The invariant of a specification is guaranteed to hold for the object offering the interface,
so it is a predicate on the entire (local) trace. The (local) trace of o:F is the global trace
of the system we consider, restricted to α(o:F). Hence, by an invariant I declared in
an interface, we expect Iout(h,o) to hold. If the assumption predicate is omitted in the
declaration of an interface, it is the same predicate as the invariant. If auxiliary functions
or predicates are needed for specification purposes, these may be defined following the
where keyword.

Traces are used explicitly in interface declarations to determine behavior at specific points
in time. The behavior of an object offering the interface is then described by a set T of
possible (finite) traces. For every trace h in the set T , all prefixes of h represent prior
points in the life of the object and must also belong to T , so T is prefix closed and
represents a safety specification in the sense of Alpern and Schneider [1].

When an interface F inherits interfaces F1, . . . ,Fm (1 ≤ i ≤ m) and o offers F to the
environment, the alphabet of o:Fi is included in α(o:F). For the traces, inclusion is by
projection. The trace set T (o:F) of o:F , where A and I are the assumption and invariant
predicates of F , is then the prefix closure of

T (o:F) =
{

h : Seq[α(o:F)]
∣∣∣∣ h/α(o:F1) ∈ T (o:F1)∧ . . .∧h/α(o:Fm) ∈ T (o:Fm)
∧Ain(h,o)⇒ (Iout(h,o)∧Aout(h,o))

}
.

We do not want the output from the object to violate the assumption of future extensions
to a trace, so semantically Aout(h,o) is always included as part of the invariant.

5 Embedding OUN Specifications in PVS

In this section, a richer theory for communication events is introduced in PVS to reflect
remote method calls in OUN. The OUN notion of a trace is formalized, and a framework
for representing interface declarations in PVS is introduced. We discuss the representation
of interface specifications and of objects offering OUN interfaces.

5.1 Communication Events for Remote Method Calls

The Event type of Section 3 needs to be modified to include all the information of OUN
events. To commence, let Interface be a type for interface names in PVS. A type is
introduced for different kinds of events, i.e. initiation and completion, EvtKind: TYPE
= {i,c}. A uniform type is used for the possible data values transmitted as either input
or output values to the communication events. Here, transmitted data values are either
natural numbers or objects typed by interface. The (disjoint) union of two types cannot be
constructed directly in PVS [6]. Instead, they are wrapped into a new type, using different
constructors and identifiers for the different subtypes. Define an abstract datatype Data:

Data: DATATYPE
BEGIN
numb(x: nat): numb?
ref(x: Object, y: Interface): ref?

END Data

The modified type Event is a subtype of

[# caller: Object, to: Object, name: Method, kind: EvtKind,
input: list[Data], output: list[Data] #]



such that the list of output data is null for initiations and that the caller and receiver of
an event are different objects. Checking that the number and types of input as well as
output values are correct for any actual method declaration is implicit in the alphabet
declarations. All the results of Section 3 hold for the modified Event type.

5.2 A Theory of Traces

For OUN traces, there is an underlying assumption that every completion in a trace is
preceded by a corresponding initiation. To any event m, we can construct the initiation
event init(m) that corresponds to m. (If kind(m)=i, then init(m)=m.) Say that a
set of events is balanced if there is an initiation event in the set that corresponds to every
completion event in the set. Balanced sets of events satisfy the following predicate:

balanced?(s: set[Event]): bool =
(FORALL (m: Event):

kind(m) = c AND member(m, s) => member(init(m), s))

A sequence h over a set of events S is causal if, for every balanced subset of S, initiation
events occur more often than not in all prefixes of the trace, formalized by

causal(tr: seq[Event]): bool =
FORALL (s: set[Event]):
balanced?(s) => dom(restrict(tr, s), {x: Event | kind(x) = i})

where the domination predicate dom(t,s) states that events from the set s occur more
often than not as one moves from left to right in the sequence t. Note that for every
completion event e occurring in a trace, causality implies that the initiation corresponding
to that termination has already occurred, as the set {e,init(e)} is balanced.

Define a type Trace to represent OUN traces, the causal subtype of Seq[Event], as
follows:

Trace: TYPE = (causal)

The empty sequence satisfies the causality predicate, so it inhabits Trace. The largest
input and output prefixes are defined by recursion and denoted in_prefix and
out_prefix, respectively.

5.3 Objects typed by Interfaces

An object o that offers an interface F to its environment has a defined alphabet α(o:F)
and a defined set of traces T (o:F). We can therefore interpret o:F as an interface
specification in the sense of Section 3. Whereas the alphabet may be translated into a
PVS set of events in a fairly straightforward manner (provided that all inherited interfaces
and their cointerfaces are already defined), the translation of the trace set depends upon
our ability to represent the assumption and invariant predicates in PVS. In this section,
we show how OUN specifications can be translated into PVS, given a representation
of the assumption and invariant predicates. First, remark that the alphabet of an OUN
specification is balanced, which is helpful for the consideration of the traces. An OUN
specification is defined as the corresponding subtype of Specification:

OUNspec: TYPE = {s: Specification | balanced?(alpha(s))}

We now define the types for assumption and invariant predicates as

AsmPred: TYPE = [Trace, Object, Object -> bool]

InvPred: TYPE = [Trace, Object -> bool]



Furthermore, we want these predicates to be true for the empty trace. For each inherited
interface, we assume that the alphabet is included by construction. The traces of the new
interface must belong to the trace set of an inherited interface, after appropriate restriction.
This requirement is defined as a predicate on traces:

inheritanceReq(h: Trace, Interfaces: set[OUNspec]): bool =
FORALL (s: OUNspec): member(s, Interfaces) =>
member(restrict(h, alpha(s)), traces(s))

Using this requirement and the assumption and invariant predicates, the following
predicate is constructed on traces:

tracepred(h: Trace, Asm: AsmPred, Inv: InvPred, O: Object,
Inherited: set[OUNspec]): bool =

((FORALL (x: Object): NOT (x = O) => Asm(in_prefix(h, O), O, x))
=> (Inv(out_prefix(h, O), O)

AND (FORALL (x: Object):
NOT (x = O) => Asm(out_prefix(h, O), O, x))))

AND inheritanceReq(h, Inherited)

The trace set of o:F can then be represented as the set of traces h such that all prefixes of
h satisfy the predicate above:

AsmInvTraceSet(a: (balanced?), Asm: AsmPred, Inv: InvPred,
O: Object, Inhtd: set[OUNspec]): set[Trace] =

{h: Trace | restrict(h, a) = h AND
(FORALL (pfix: Trace):

(ord(pfix, h) => tracepred(pfix, Asm, Inv, O, Inhtd)))}

These trace sets should be prefix closed. In PVS, we state and prove the following lemma:

PrefixclosureLemma: LEMMA
FORALL (a: (balanced?), Asm: AsmPred, Inv: InvPred, O: Object,

Inherited: set[OUNspec]):
prefixclosure((AsmInvTraceSet(a, Asm, Inv, O, Inherited)))

An interface F that has not been associated with a particular object identifier, can be
represented by the union of all (possible) objects offering F . Thus, F is represented by
the specification

〈Ob ject,
⋃

o:Ob ject

α(o:F),
⋃

o:Ob ject

T (o:F)〉.

With this representation of interfaces, we can reason about refinement and composition
directly, even before it is decided which objects shall actually offer an interface. Remark
that other parameters to interface declarations can be treated in the same manner.

6 A Theory for Graphically Oriented Specifications

A convenient predicate for safety specifications is the predicate that defines prefixes of
regular expressions, because the set defined by such a predicate is prefix closed. A theory
for such predicates is now introduced and will be used in the examples of Section 7 in
order to express assumption and invariant predicates. Regular expressions can be defined
as an abstract datatype in PVS, parameterized by a type T :

reg[T: TYPE]: DATATYPE
BEGIN
rempty: rempty?



single(elt: T): single?
AND(fst: reg, snd: reg): and?
OR(lft: reg, rgt: reg): or?
star(body: reg): star?

END reg

We want to define constructively a predicate prs(t,exp) which is true if the trace t is
a prefix of a trace described by the regular expression exp. To represent error situations
in the recursion, the regular expressions are wrapped into another datatype:

ereg[T: TYPE]: DATATYPE
BEGIN
okreg(rexp: reg): okreg?
emptyreg: emptyreg?
nomatchreg: nomatchreg?

END ereg

We can then define the function prs as follows:

prs(s: seq, e: reg): RECURSIVE bool =
CASES s
OF empty: TRUE,

addr(q, y): LET z = lt(s), q = rr(s), f = pop(z, e) IN
IF emptyreg?(f) OR nomatchreg?(f)
THEN FALSE ELSE prs(q, rexp(f))

ENDIF
ENDCASES

MEASURE length(s)

where pop(z,e) returns an element of type ereg, and in the case of success, a new
regular expression where the element matching z has been removed (from the left). The
prs predicate gives a graphical specification style, as demonstrated by its prefix closure:

PrefixLemma: LEMMA
FORALL (s,t:seq, r:reg): (ord(s,t) and prs(t,r)) => prs(s,r)

7 Examples

We derive PVS specifications from two OUN interfaces W riter and ReaderWriter, that
describe an object controlling read and write access to some shared data, following [2].
For Writer, access is restricted so that only one object in the environment may perform
write operations at the time. The interface ReaderWriter also allows concurrent read
operations. In PVS, we prove that ReaderW riter refines Writer.

7.1 A Writer Interface in PVS

The Writer interface limits write access to one object at the time. A calling object must
first invoke a method Open_write in order to obtain write access. To return access control,
the calling object invokes the method Close_write. In OUN, the W riter interface can be
declared as follows:

interface Writer[T : Data-type]
begin

opr Open_write()
opr Write(d : T )



opr Close_write()
asm A(h,o,x) = h prs (↔.open_write ↔.write∗ ↔.close_write)∗

inv I(h,o) = (h/←) prs (←.open_write ←.write∗ ←.close_write)∗

end

In PVS, let object have type Object and let Open_write, Write, and
Close_write be of type Method. Assume that object supports Writer, and define
AlphaW of type (balanced?) to be the events with these method names and receiver
object.

The assumption and invariant predicates of W riter consider only the name and kind of the
communication events, ignoring the object identities of the caller and receiver, so define a
type AbstractEvent that only includes these fields, import the regular expressions
over this type into the current theory, and define a function liftseq that turns a
trace into a sequence of AbstractEvent. The assumption and invariant predicates are
similar, except that the invariant only considers completion events. It can be defined as

InvWriter: InvPred =
(LAMBDA ((tr: Trace), (O: Object)):

prs(liftseq(restrict_kind(tr, c)),
AND(AND(single((# name := Open_write, kind := c #)),

single((# name := Write, kind := c #))),
single((# name := Close_write, kind := c #)))))

The trace set TracesW can be obtained by AsmInvTraceSet, and we get:

ObjectW: OUNspec = (# alpha:= AlphaW, traces:= (TracesW),
obj:= singleton(object) #)

7.2 A ReaderWriter Interface in PVS

The ReaderW riter interface allows concurrent read access but only sequential write
access. In addition, an object can perform read operations when granted write access
to the shared data. The methods and behavior of Writer are inherited.

interface ReaderWriter[T : Data-type]
inherits Writer[T ]

begin
opr Open_read()
opr Read(out d : T )
opr Close_read()

asm A(h,o,x) = h prs (↔.open_write ↔.write∗ ↔.close_write
| ↔.open_read ↔.read∗ ↔.close_read)∗

inv I(h,o) = �(h/ ←.open_read)− �(h/ ←.close_read) = 0
∨ �(h/ ←.open_write)− �(h/←.close_write) = 0

end
In PVS, we import the theory for the Writer interface and declare Open_read, Read
and Close_read to be of type Method. Then, construct a set of events AlphaR cor-
responding to these method names. The alphabet of ReaderW riter becomes AlphaRW:
(balanced?) = union(AlphaR, AlphaW). The assumption predicate AsmRW
resembles the predicates of Writer. The invariant predicate InvRW is defined as

InvRW: InvPred =
(LAMBDA ((tr: Trace), (O: Object)):
(length(restrict(tr, {e: Event | name(e) = Open_read})) -



length(restrict(tr, {e: Event | name(e) = Close_read})) = 0)
OR
(length(restrict(tr, {e: Event | name(e) = Open_write})) -
length(restrict(tr, {e: Event | name(e) = Close_write})) = 0))

The trace set TracesRW can then be constructed from predicates AsmRW and InvRW,
but for this interface, we need to include the inherited specification:
TracesRW: set[Trace] =
AsmInvTraceSet(AlphaRW, AsmRW, InvRW, object, singleton(ObjectW))

We get an OUN specification for the object supporting the ReaderWriter interface,
which is denoted ObjectRW. Finally, we can prove in PVS that
RWrefinesW: LEMMA refines(ObjectRW, ObjectW)

8 Conclusion

For any practical purposes, a formal specification language needs support by a proof
environment in order to allow formal reasoning about specifications of some complexity.
In this paper, we present a PVS proof environment for a formalism for partial
object specifications. This formalism is shown to support compositional refinement of
specifications. We extend the proof environment with constructs to facilitate its use
as a formal reasoning environment for OUN, a formal specification language for the
development of open distributed systems.

The main difficulty associated with translating OUN specifications into the formalism
of the proof environment now arise from the representation of assumption and invariant
predicates. A theory for prefixes of regular expressions is added to the formalism as a
convenient way to define predicates, allowing more graphically oriented specifications.
We show by examples how some OUN interfaces can be translated into PVS, and also
how refinement claims are represented and proved.

References
[1] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,

21(4):181–185, Oct. 1985.
[2] O.-J. Dahl and O. Owe. Formal methods and the RM-ODP. Technical Report 261,

Department of Informatics, University of Oslo, 1998.
[3] E. B. Johnsen. Composition and refinement for partial object specifications.

Submitted for publication, 2001.
[4] E. B. Johnsen and O. Owe. A PVS proof environment for OUN. Technical Report

295, Department of informatics, University of Oslo, 2001. The PVS theories are
available at http://www.ifi.uio.no/~einarj/OunPvs.tar.bz2.

[5] O. Owe and I. Ryl. A notation for combining formal reasoning, object orientation
and openness. Technical Report 278, Dept. of informatics, University of Oslo, 1999.

[6] S. Owre and N. Shankar. Abstract datatypes in PVS. Technical Report SRI-CSL-93-
9R, Computer Science Laboratory, SRI International, June 1997.

[7] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language
Reference. Computer Science Laboratory, SRI International, Sept. 1998.

[8] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System Guide.
Computer Science Laboratory, SRI International, Sept. 1998.


