
Sorting by generating the sorting permutation, and the effect of
caching on sorting.

Arne Maus, arnem@ifi.uio.no
Department of Informatics

University of Oslo

Abstract
This paper presents a fast way to generate the permutation p that defines the sorting
order of a set of integer keys in an integer array ‘a’- that is: a[p[i]] is the i’th sorted
element in ascending order. The motivation for using Psort is given along with its
implementation in Java. This distribution based sorting algorithm, Psort, is compared to
two comparison based algorithms, Heapsort and Quicksort, and two other distribution
based algorithms, Bucket sort and Radix sort. The relative performance of the
distribution sorting algorithms for arrays larger than a few thousand elements are
assumed to be caused by how well they handle caching (both level 1 and level 2). The
effect of caching is investigated, and based on these results, more cache friendly versions
of Psort and Radix sort are presented and compared.

Introduction
Sorting is maybe the single most important algorithm performed by computers, and
certainly one of the most investigated topics in algorithmic design. Numerous sorting
algorithms have been devised, and the more commonly used are described and analyzed
in any standard textbook in algorithms and data structures [Dahl and Belsnes, Weiss,
Goodrich and Tamassia] or in standard reference works [Knuth, van Leeuwen]. New
sorting algorithms are still being developed, like Flashsort [Neubert] and ‘The fastest
sorting algorithm” [Nilsson@. The most influential sorting algorithm introduced since the
60’ies is no doubt the distribution based ‘Bucket’ sort which can be traced back to
[Dobosiewicz].

Sorting algorithms can be divided into comparison and distribution based algorithms.
Comparison based methods sort by comparing two elements in the array that we want to
sort (for simplicity assumed to be an integer array ‘a’ of length n). It is easily proved
[Weiss] that the time complexity of a comparison based algorithm is at best O(n
logn).Well known comparison based algorithms are Heapsort and Quicksort. Distribution
based algorithms on the other hand, sort by using directly the values of the elements to be
sorted. Under the assumption that the numbers are (almost) uniformly distributed, these
algorithms can sort in O(n) time. Well known distribution based algorithms are Radix
sort in its various implementations and Bucket sort.

Radix and Bucket sort
Since the distinction between the various Radix sort and Bucket sort implementations is
important in this paper, we will define this difference as how they deal with the problem
of elements in ‘a’ having the same value. Radix sort first count how many there are of
each value, and will then afterwards be able to do a direct placement of the elements

based on this information. Bucket sort will, on the other hand, do a direct placement of
each element in its ‘bucket’ based directly on its value. But since there might be more
than one element with this value, a list-structure is usually employed to connect these
equal valued elements together. A last phase is then need in Bucket sort to connect these
lists to generate the sorted sequence.

The sorting permutation and Psort
This paper introduces algorithms for generating the sorting permutation ‘p’ of ‘a’ -
defined as: a[p[i]] is the i’th sorted element of ‘a’ in ascending order. The original array,
‘a’, is not rearranged. The reason for this is that in real life problems, we are not only
interested in sorting a single array, but rearranging a number of information according to
some key – say writing a list of students names and addresses etc. sorted by their student
number, or writing information on bank accounts (names, addresses, payments and
balance) sorted by account number. If these accompanying information are kept in arrays
b, c,.., finding the sorting permutation p, will make it trivial to write out this as a[p[i]],
b[p[i]], c[p[i]],…. This is the motivation for finding the sorting permutation.

The alternatives to use the sorting permutation, are either to sort by rearranging the
elements in the accompanying arrays b,c,.. together with the elements in ‘a’ in an
ordinary sort, which takes a heavy time penalty, or alternatively store the information
belonging to logical units in objects and then sort these objects based on the key in each
object. Sorting objects can, under the assumption that the objects are generated outside of
the algorithm, be made just as fast as sorting integer arrays, as demonstrated by Bucket
sort in Fig. 1. If the objects to be sorted are also generated by the algorithm (which is
assumed not to be a likely situation), then object based Bucket sort becomes 3 to 5 times
as slow as Quicksort (not shown here). Anyway, object sorting takes a rather high space
overhead (pointers for lists and system information for each object). Generating the
sorting permutation can thus be a good alternative in many practical situations.

The generation of the sorting permutation is not, however, a new idea. Even though I am
not able to find any published paper on it, nor finding a published algorithm, at least two
public software libraries have these functions [HPF, Starlink/PDA]. The implementation
of these library functions are not (easily) available. Code-fragment 1 is my first
implementation of Psort. We see that it borrows from a full one-pass Radix sort. After
having found the maximum value, Psort counts how many there are of each value and
accumulates these counts into indexes (logical pointers). The final stage is, however,
new. Instead of rearranging ‘a’, it generates p from a (third scan) of the array ‘a’ and
these logical pointers.

Comparison with other sorting algorithms
We observe by inspecting the code, that Psort obviously has a time complexity of O(n),
and uses two extra arrays of length O(n) - assuming that the max value in ‘a’ is of order
n. To be exact, Psort does 6n reads and 6n writes in total (also counting the zero-fill).We
now compare Psort with Heap-sort, Quick-sort, Bucket sort and ordinary least-significant
Radix-sort with a ‘digit’size of 10 bits. The implementation of Heapsort is taken from
[Dahl and Belsnes], Quicksort is taken from [Hoare], but optimized by calling insertion

sort if the segment to sort is shorter than 10 elements. Bucket sort is my own
implementation with objects and one list (stack) for every possible value, and a final step
of pop’ing all these stacks , starting with the last , and pushing them onto a result-list
(stack).

 int [] psort1 (int [] a)
 // assumes max unknown
 { int [] p = new int [n];
 int [] count ;
 int localMax = 0;
 int accumVal = 0, j, n= a.length;

 // find max
 for (int i = 0 ; i < n ; i++)
 if(localMax < a[i]) localMax = a[i];

 localMax++; // upper limit of array
 count = new int[localMax]; // zero-filled by def.

 for (int i = 0; i < n; i++) count[a[i]]++;

 // Add up in 'count' - accumulated values
 for (int i = 0; i < localMax; i++)
 { j = count[i];
 count[i] = accumVal;
 accumVal += j;
 }

 // make p[]
 for (int i = 0; i < n; i++)
 p[count[a[i]]++] = i;

 // now a[p[i]] is the sorted sequence
 return p;

 }/* end psort1 */

Code fragment 1 – Psort1, first version (not optimized for cache usage)
Finds the sorting permutation

The tests were run on a Dell Precision Workstation 410 Pentium III 450MHz with 32 KB
(16-KB data cache; 16-KB instruction cache) level 1 cache and a second-level cache of
512-KB pipelined burst; 4-way set-associative, write-back ECC SRAM. The results of
sorting arrays of lengths varying from 50 to 1 million elements is presented in Figure 1.
Note the non linear scale on the x-axis and that results are normalized with Quicksort = 1
for each length of the sorted array.

 void radix(int [] a)
 { // initial operations
 int max = 0, i, n = a.length;

 for (i = 0 ; i < n; i++)
 if (a[i] > max) max = a[i];
 b = new int [n];
 c = radixSort(a,b, 0, max);

 // copy array if odd number of calls
 if (a != c)
 for (i = 0; i < n; i++) a[i] = c[i];
 }

 int [] radixSort (int [] fra, int [] til , int bit, int max)
 { int numBit = 10, rMax = 1024-1;
 int acumVal = 0, j, n = fra.length;
 int [] count = new int [rMax+1];

 for (int i = 0; i < n; i++)
 count[((fra[i]>> bit) & rMax)]++;

 // Add up in 'count' - accumulated values
 for (int i = 0; i <= rMax; i++)
 { j = count[i];
 count[i] = acumVal;
 acumVal += j;
 }

 // move numbers between arrays
 for (int i = 0; i < n; i++)
 til[count[((fra[i]>>bit) & rMax)]++] = fra[i];

 if ((1 << (bit + numBit)) < max)
 return radixSort (til, fra, bit + numBit, max);
 else return til;

 }/* end radixSort */

Code fragment 2 – Radix sort, sorting by 10 bit least-significant-first Radix.

We see that the three O(n) time complexity distribution sorting algorithms do better than
Quicksort and Heapsort, for number to be sorted < 100 000 - up to 3 times as fast as
Quicksort, and approx.- 7 times faster than Heapsort (except that Radix performs badly
when n < 100 because it uses a fixed digit size of 10 bits, which is an overkill for such
small lengths of a). In the end Radix emerges as the winner with Psort in second place
and that Bucket sort degenerates for large n because of the space overhead incurred by
objects.

Figure 1. Comparison of Psort versus Quicksort, Heapsort, Radix sort and Bucket sort. The
results are normalized for each length of the array with Quicksort = 1.

If we inspect the code for Radix in Code fragment 2, we see that for length of array a >
1024, we use 4 reads and 3 writes of O(n) in each method invocation plus one initial O(n)
read and one write, and with two invocations, a total of 9 reads and 7 writes – compared
with 6 reads and 5 writes for Psort. Why is then Radix a faster algorithm? We will
explain this by the effect of caching – both by the very fast 16 kByte level 1 cache (able
to hold a little more than 4000 integers) and by the 512 kByte level 2 cache that is able to
hold a little more than 100 000 integers. In the next section we investigate how large the
effect of cache misses might be.

The effect of caching
It is well known that the speed difference between the CPU, that soon operates with a
cycle time of less than 1 nanosecond, and the main memory, that has a cycle time of
approx. 20 nanoseconds, is increasing. An access to main memory from CPU goes
through the system bus (typically clocked at 100MHz) and takes more than 50-100
nanoseconds, or approx. 3 memory cycles to complete. To ease this speed discrepancy,
data are read and written a cache line at a time. The size of a cache line is typically 32
bytes (8 integers). Two levels of memories, level 1 cache integrated on the CPU, and
level 2 cache between the CPU and the system bus, are employed to ease this speed
difference. The effect of caching in general is extensively investigated, usually by
estimated by simulations or pure theoretical considerations.

Also the effect of caching on sorting has previously been investigated in [LaMarca &
Ladner] where Heapsort, Mergesort and Quicksort are compared to Radix sort. They
work along similar lines as this paper, and report on improved performance on cache-
friendly (in their words: memory tuned) versions of Heapsort, Mergesort and Quicksort.
They report negative findings on Radix sort. This paper tries cache-friendly versions of

Rela tive perfo rm ance o f sor t in g a lg or ithm s

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

0 .0 5 0 .1 0 .5 1 5 1 0 5 0 1 0 0 5 0 0 1 0 00

Length o f sor ted in t ar ray (x 1000)

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

Q
ui

ck
-s

or
t

H e a p

Q u ic k

B u c ke t

P S o r t

R a d ix

Radix sort and Psort. The main reason that their findings are not the same as here (here:
Radix is best versus LaMarca & Ladner: Radix is worst), is that they have random 64 bit
values in ‘a’, while I have a uniform random distribution of the values {0..length of ‘a’}.
Comparison based methods are heavily favored by such sparse distributions, while
distribution based sorting are favored by a dense set of keys.

This paper also takes an empirical approach. The number of methods employed at the
different hardware levels, are many. They are not very well documented – if at all, and
their combined effect is difficult to assess. Also, new hardware is introduced every few
months. We will therefore empirically try to find the effect of caching by repeatedly
executing a typical combined array access statement found in distribution based sorting
algorithms. This statement is of the form a[b[…b[i] ..]] = ‘some simple expression’
That is, the array ‘a’ is indexed by a number of nested references to an array b. Each
reference to ‘b’ is a read operation, and the reference to ‘a’ is a write operation. This
operation is performed for the lengths of a and b = 10, 50, 100,…,5 million , and iterated
enough times to get reliable time measurements. The number of reads (number of nested
references to b) is varied = 1,2,4,8 or 16.

for(int i= 0; i < n; i++)
 a[b[b[i]]]] = i ;

Code fragment 3 – Cache miss test code example (1 Write, 2 Reads).

The important difference in the tests is the contents of b. The base case is that b[i] = i for
all values of i. A nested reference to b[i] will then be cached in the level 1 and level 2
cache, and will reference the same cached value repeatedly. The other content of ‘b’
tested, is a random constructed permutation of the numbers 0 to n-1. A nested reference
to such an array will almost certainly generate cache misses for (almost) all references
when n is large enough. The effect investigated is for which ‘n’ the effect of cache misses
are felt, and how large it is.

The results are given in figure 2 and 3. In the figures, the results with b[i] = i, is denoted
sequential, and the randomly filled b is denoted Rdom or random, and the number of
reads is the number of nesting of the b references. The number of writes is 1 in all cases.

In figure 2 we see that the execution time of the random case increases far faster than
sequential access as expected, but since we have a linear scale on the x-axis, it is difficult
to see when the two curves diverge. In figure 3, with a log scaled x-axis, we first see that
up to n = 1000, there are no noticeable differences between sequential and random access
of arrays. This I explain by the fact that both arrays ‘a’ and ‘b’ are very soon fully cached
in both caches after a small number of references. When n = 5000, we obviously don’t
have room for all of ‘a’ and ‘b’ in the level 1 cache, and the random access pattern
generates many cache misses. In the range n = 5000 to 100000 , with typical expressions
found in sorting algorithms like Psort, with one write and two reads, we will experience
an execution time 2-3 times larger with random access of arrays than with a sequential
reference to the same arrays.

For arrays longer than 100000, we also generate lots of level 2 cache misses with both
patterns, every 8’th time with the sequental pattern and for every access with the random
access pattern, because there is not enough memory for the arrays in the level 2 cache.
We see that the typical 1 write, 2 reads expression executes approx. 5 times faster with
sequential than random access. When taken to extreme, with 1 write and 16 reads per
operation, a more than 20 times slower random execution is achieved with n = 5 million.
The lesson learned is that it is not necessarily the algorithm with the fewest number of
performed statements that is the fastest - if we keep references to data localized or
sequential, we could still make a faster algorithm even if it performs 2 to 3 times as many
statements.

Figure 2. The absolute running times of caching on a modern PC, comparing the same access to
two arrays a and b for different lengths of these arrays – the Sequential does generate far fewer

cache misses, than random access that (almost) certainly generates a cache miss for every
reference(1 write and 2 reads per expression) for large n.

A new Psort and Radix algorithm
Inspired by the fact that a (more) sequential access pattern generates far fewer caches
misses and that smaller arrays stays longer in the caches regardless of their access
pattern, I decided to redesign the Psort and Radix algorithms used in this paper to be
more cache friendly. Being inspired by the better performance of Radix sort, I propose a
two-pass Psort algorithm, Psort2, as given in Code fragment 4.

The redesigned Radix sort, called Block sort, has a code that is too long for this paper - it
would cover almost 3 pages. It can best be described as a combination of a pass 1 that is a
kind of buffered bucket sort on the most significant bits. For each bucket, a dynamic
linked list of integer arrays (with a maximum size of 1024 elements) is kept, and the
elements a[i] are placed sequentially into the linked buffer-list corresponding to the value
of the most its significant bits. The number of elements in each list is also counted as the
elements are placed in this list of buffers.

Absolute times - caching (1 Write, 2 Read)

0

500

1000

1500

2000

2500

0 1000000 2000000 3000000 4000000 5000000 6000000
Number of elements, n

M
ill

is
ec

 -
 p

er
 n

 o
pe

ra
tio

ns

b[i]
b[random p]

Figure 3. The relative effect of caching on a 450 MHz PC, comparing the same accesses to two
arrays a and b for different lengths of these arrays – the Sequential does generate few cache

misses, while the Rdom (random) filled almost always generates a cache miss for every reference
made for large n. The results are normalized with the sequential = 1 for each length of n.

int [] psort2 (int [] a)
{ int n = a.length, maxNumBit1 = 10;
 int [] p = new int [n];
 int [] til = new int [n];
 int [] ant ;
 int localMax = 0;
 int numbit=0, mask=0,mask1=0,mask2=1;
 int numbit1, numbit2, num1,num2, num;
 int accumVal = 0, j;

 // find max
 for (int i = 0 ; i < n ; i++)
 if(localMax < a[i]) localMax = a[i];

 if (localMax < 4) localMax =4;

 // find bitnumb & masks;
 while ((1<<numbit) < localMax) numbit++;
 mask = (1<<numbit) -1;
 numbit1 = numbit /2;
 numbit2 = numbit - numbit1;

E ffe c t o f c a c h in g

0 .0 0 0

5 .0 0 0

1 0 .0 0 0

1 5 .0 0 0

2 0 .0 0 0

2 5 .0 0 0

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 E + 0 7

N u m b er o f e lem en ts (lo g sca le)

R
el

at
iv

e
to

 s
am

e
se

qu
en

tia
l a

cc
es

s
(=

 1
)

R d o m :1 W + 1 6 R

R d o m :1 W + 8 R

R d o m :1 W + 4 R

R d o m :1 W + 2 R

R d o m :1 W + 1 R

S e q ue ntia l

 while (numbit1 > 1 && numbit2 < maxNumBit1)
 { numbit1--; numbit2++;}
 mask1 = (1<<numbit1) -1;
 mask2 = mask - mask1;
 num1 = 1<<(numbit1);
 num2 = 1 <<(numbit2);
 if (num1 < num2) num = num2; else num = num1;
 localMax++; // upper limit of array

 // ---- pass 1--------------
 ant = new int[num1];

 for (int i = 0; i < n; i++)
 ant[a[i] & mask1]++;

 // Add up in 'ant' - accumulated values
 for (int i = 0; i < num1; i++)
 { j = ant[i];
 ant[i] = accumVal;
 accumVal += j;
 }
 // move numbers - pass 1
 for (int i = 0; i < n; i++)
 til[ant[a[i] & mask1]++] = i;

 // ---- pass 2 --------------
 ant = new int[num2];
 accumVal =0;

 for (int i = 0; i < n; i++)
 ant[(a[til[i]] & mask2)>> numbit1]++;

 // Add up in 'ant' - accumulated values
 for (int i = 0; i < num2; i++)
 { j = ant[i];
 ant[i] = accumVal;
 accumVal += j;
 }
 // make p[]
 for (int i = 0; i < n; i++)
 p[ant[(a[til[i]] & mask2)>> numbit1]++] = til[i];

 // now a[p[i]] is the sorted sequence
 return p;

 }/* end psort2 */

Code fragment 4. The 2 pass Psort algorithm.

The second pass then takes over which for each such list, first counts the number of
elements of each possible value in the least significant bits. After this counting, a direct
placement back into 'a' can be made, starting with the first list having all zeros in its most
significant bits.

In the design of both Psort2 and Block sort, care was taken so that all access to long
arrays of length O(n) was sequential, and that all supporting array that might be accessed
in a random fashion were short - i.e • 1024 elements. Such small arrays would then
entirely be cached in the level 1 cache. In short, all data structures would be cache
friendly.

Figure 4. Comparison of the reworked cache-friendly algorithms Block sort and P sort 2 pass,
compared with Quicksort, Psort 1 pass and the least-significant-digit-first Radix sort.

The results are plotted in Figure 4, normalized with Quicksort = 1. (Radix sort is a little
reworked from the code presented in Code fragment 2. It now adjusts down the number
of bits it sorts on if the largest element to be sorted has fewer than 10 bits. Radix sort
therefore does not in Figure 4, as in Figure 1, perform badly for short arrays.)

We see that the two new algorithms perform well compared with Quicksort, but are both
somewhat slower than the algorithm they are supposed to be an improvement upon. Psort
2 pass is slower than Psort 1 for all lengths of the sorted array and Block sort is slower
than Radix except for some lengths in the range 5000-10000, where it is only marginally
faster. How do we explain this?

First, the assumption that I based this rework on, is not all correct. As previously
observed, the Radix algorithm in Code fragment 2 does 9 reads and 7 writes (when
sorting arrays of length between 2 10 and 2 20). Not all of these reads and writes are cache
unfriendly. A closer inspection reveals that only 2 of the writes and none of the reads are
random in the O(n) arrays - the rest are cache friendly accesses. Even though these 2

Cache sortin g alg orithms com pared

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

0 .0 5 0 .1 0 .5 1 5 1 0 5 0 1 0 0 5 0 0 1 0 0 0

L e n g th o f s o r te d a rray (x 1 00 0)

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

re
la

tiv
e

Q
ui

ck
-s

or
t (

=
1)

Q u ic k

P S o rt-2 p a s s
P S o rt - 1 p a s s
B lo c k

R a d ix

writes may take say 5-20 times as long time as a cache friendly write, the possible
improvement factor for an all-cache-friendly-algorithm is then certainly not a factor 3 to
5, but more a factor of 2. This factor can be observed by comparing the Radix sort
execution time for n=5000 (1.469 msec.) where we can assume that almost all read and
write operations are cache friendly, with the execution time for n = 1 000000 (432.7
msec.). This gives a factor of 294 longer execution time. Since Radix in both cases uses
two passes, the added execution time that can't be contributed to the extra length (a factor
of 200), that is a factor of 1.47, that can only be caused by cache misses.

A similar analysis of the possible improvement factor for Psort with an execution time of
1.312 msec. for n= 5000, and 746.9 msec. for n= 1 000000, gives a possible improvement
factor of 2.85 for Psort that can not be contributed to the increased length.
In both cases, Psort as presented in Code fragment 1, uses only one pass, while Psort2
uses 2 passes.

We could therefore hope that at least there would be possible to improve on Psort, but as
we see from Code fragment 2, the Psort2 has much longer and more complex code with
more nested expressions. The final and most complex expression in Psort1:
 p[count[a[i]]++] = i;
has its counterpart in Psort2:
 p[ant[(a[til[i]] & mask2)>> numbit1]++] = til[i];
We see a longer, more complex expression with 4 reads and 2 writes compared with 2
reads and 2 writes. Obviously, some of the possible gains are lost in the code. The length
of the code itself is also an issue, since code is cached in the 16kByte instruction cache.

If we do a similar analysis of Radix, the Block sorting algorithm is much longer, but each
expression is (almost) as simple. Only the length of the code and the length of each loop
may be blamed for more code cache misses. The cache-miss factor for Block sort is
614.0/(1.416*200) = 2.16, which is worse than for Radix sort.

The Psort2 algorithm, with an execution time of 1.672 msec. for n = 5000 and 876.6
msec. for n = 1000 000 has itself a cache-miss factor of 2.62, which is almost as bad as
Psort1. The explanation for the fact that the cache-friendly Psort2 algorithms have as bad
a cache factor as Psort1 that it is supposed to replace, is, apart from the increased
instruction cache misses, that Psort1 only scans the O(n) arrays twice, but Psort2
basically doubles the number of reads and writes. And when these large arrays are larger
than the level 2 cache, every 8’th access for Psort2 will also generate a cache miss even
with sequential reading of these arrays. Cache-friendly code is certainly not the same as
cache-miss-free code.

Conclusion
This paper has presented two themes. First, a new algorithm Psort, for generating the
sorting permutation has been presented, and it has been demonstrated to be almost as fast
as any sorting algorithm. It has also been pointed out why this is a practical sorting
algorithm when more than one array has to be brought into the same sorting order.

 Secondly, I have empirically investigated the effect of caching on sorting algorithms,
and demonstrated that cache misses might account for a slowdown when sorting large
arrays by a factor of 1.5 to 3 depending on which sorting algorithm is used. Then two

new algoritms, Block sort and Psort2, has been presented that was designed to be more
cache friendly. They did not on the computer used for testing, outperform their simpler,
but more cache unfriendly counterparts, Radix and Psort1.

This last conclusion needs however, a final remark. Any standard algorithm is a mixture
of cache friendly and cache unfriendly code, and the effect of removing all cache
unfriendly code in the way it was done here, did not pay off today. That does not rule out
these new algorithms once and for all. New machines with a far worse ratio between the
CPU cycle time (with more than 1000 MHz) and main memory, will soon be brought to
the marketplace. Since new memory architectures, like RAMBus, up till now has not
demonstrated better performance than more standard memory architectures, it seems
reasonable to assume that the penalty for doing a cache miss soon will double from the
machine used in this paper. It will therefore be interesting to test Psort2 and Block sort on
new machines in the years to come.

References
[Dahl and Belsnes] - Ole-Johan Dahl and Dag Belsnes : „Algoritmer og datastrukturer“

Studentlitteratur, Lund, 1973
[Dobosiewicz] - Wlodzimierz Dobosiewicz: “Sorting by Distributive Partition”, Information

Processing Letters, vol. 7 no. 1, Jan 1978.
[Goodrich and Tamassia] - Michael T. Goodrich and Roberto Tamassia: „ Datastructures and

Algorithms in Java“, John Wiley & Sons, New York, 1998
[Hoare] - C.A.R Hoare : “ Quicksort”, Computer Journal vol 5(1962), 10-15
[HPF] - the GRADE_DOWN routine at:

http://hazmat.fms.indiana.edu/manpages/g/grade_down.3hpf.html
[Knuth] Donald E. Knuth: „The art of computer programming - vol.3 Sorting and Searching“,

Addison-Wesley, Reading Mass. 1973
[LaMarca & Ladner] - Anthony LaMarcha & Richard E. Ladner: “The influence of Caches on the

Performance of Sorting”, Journal of Algorithms Vol. 31, 1999, 66-104.
[van Leeuwen] - Jan van Leeuwen (ed.) „Handbook of Theoretical Coputer Science - Vol A,

Algorithms and Complexity“, Elsivier, Amsterdam, 1992
[Neubert] – Karl-Dietrich Neubert: „Flashsort“, in Dr. Dobbs Journal, Feb. 1998
[Nilsson] - Stefan Nilsson “The fastest sorting algorithm” in Dr. Dobbs Journal, pp. 38-45,

Vol. 311, April 2000
[Starlink/PDA] see software | programming | mathematical at : http://star-www.rl.ac.uk/
[Weiss] - Mark Allen Weiss: „ Datastructures & Algorithm analysis in Java“ ,

Addison Wesley, Reading Mass., 1999

