
Supporting Mobile Users in a Variable Connected

Distibuted System: the PASTA Approach�

Terje Fallmyr Gunnar Hartvigsen

Tage Stabell{Kul�

Department of Computer Science

Institute of Mathematical and Physical Sciences

University of Troms�

Abstract

The Pasta project addresses the consistency problems that occur when data is replicated

in a distributed system with mobile machines; characterised by frequent disconnection

and varying communication capability. This paper introduces the main problem area

for the Pasta project, gives an overview of the solutions o�ered by the File Repository

(Fr), and presents some initial results. The Fr allows users to copy shared data from a

distributed �le repository onto portable computers before disconnection, and later safely

update the data when su�ciently connected. Choice between optimistic and pessimistic

concurrency control is o�ered. Our approach is to provide tools for �nding the balance

between consistency and desire for progress in a system subject to variable connectivity

and write{write con
icts.

1 Introduction

With the increasing usefulness of small computers, many users add a portable computer to

the set of computers they use to process their data. One person may use a workstation at

work, a portable PC while travelling, and a desktop PC at home. This paper addresses our

approach to support convenient use of portable (or mobile) computers to read and update

shared data.

Even though the portable computers have networking hardware and software, they will

not be able to communicate at all times. Moreover, the quality of the o�ered communication

services will vary with several orders of magnitude1, and may be expensive to use for longer

periods of time too.

Mobile computers therefore need to store local copies of the data they need. To facilitate

data sharing, data must be copied onto the mobile computer, and updates must be com-

municated to be globally visible. Striking the balance between availability and consistency

requirements in such systems is critical. This is the crux of the Pasta project.

A straight forward approach may be to copy the needed data (for a day or trip) onto

the portable and copy them back upon return. Consistency now relies on manual actions

�This research is done as part of the Pasta project, a joint e�ort with the Department of Electrical

Engineering, University of Pisa, Italy.
1e.g., between ATM and modem over GSM [Alanko95]

triggered by the user's memory of where (on which machine) changes have been done. Files

can easily diverge, and manual merging of inconsistent �les is painfully slow and error prone.

The system Coda is based on the assumption of a very low frequency of write{write

con
icts [Kistler92]. This assumption may be valid in a multi-user setting dominated by read

sharing, although the frequency of write-write con
icts in a similar environment are found

16 times higher in [Huizinga94]. Based on experiences in our own environment, we do not

share the view that the assumption about very low write{write con
ict ratios is valid when

one person uses a number of machines to produce changes to the same data. Therefore we

seek alternatives to the pure optimistic approach of Coda.

The setting with one user sharing data between several machines, is in essence the same

as sharing data between several users. The simple solution described above does not scale to

the more general setting with a large amount of �les and several machines and users, where

the need to automate reads, updates and concurrency control becomes more clear.

The Pasta project seeks simple, yet working solutions, to
exible and scalable support

for distributed applications in an environment with variable connected mobile nodes.

We have chosen to base our work on a �le abstraction, and for that we use a File Repository

(Fr). Our solution to �nding a balance between consistency requirements and desire for

progress is based on a user guided selection between pessimistic and optimistic concurrency

control. The novel aspect of this work is that, as a result of adopting
exible concurrency

control, we obtain a smooth support for disconnected operation and location independent

computing. We also obtain a system that nicely supports sharing of data across a wide area

network, although that topic is not further discussed in this paper.

The rest of the paper gives an overview of the solutions o�ered by the Fr, and presents

some initial results.

2 Overview over the File Repository

This chapter gives an overview of the computational model and the architecture of Fr.

2.1 Computational model

In Pasta, the �les to be shared among clients are stored in the File Repository (Fr). The

�les are shared according to a check{in, check{out model. Fr supports sessions where a user

�rst extracts (checks out) a set of �les|that he assumes to be his working set|from the Fr

and stores it on the client machine he intends to use. The user may then disconnect and work

in isolation. Before a new session starts at another machine, modi�ed �les are attempted to

be reinstalled into the Fr.

The model makes a very clear separation between the functions of clients and the Fr.

The Fr always hold the o�cial, globally readable versions of the �les. The �les copied to

clients will still reside in the Fr. The Fr may be centralised (implemented by one server) or

distributed (implemented by more than one server). Files may be replicated in a distributed

Fr. It is, however, transparent to clients whether the �les in Fr are replicated, which

replication strategy is used, its implementation, and how many servers are involved.

In the machines where clients run, resources are assumed to be scarce. In particular, this

is true for communication opportunity and bandwidth. Furthermore, since these machines

are under full control of their user, the Fr can not depend on them to be neither trustworthy

nor available. This has two important e�ects on the design of our system:

� Since clients can not be trusted by servers, they, and not the server, must take the

initiative in any communication. It is the client's responsibility to authenticate itself in

order to consume resources at the server.

� Disconnection is the normal mode of operation, and by far the most common situation

(most portable and personal are turned o� for longer periods than they are turned on).

We will therefore not let progress in our system depend on any form of call{back to

clients.

In a session, a client can request copies of �les and request to write changed �les back to

the server. Changes made by a client are only visible to the servers and other clients after

they have been written back to the Fr. Hence, the o�cial version of a �le may not always

re
ect the most recent updates done by clients, and the order of Fr updates may not always

be the same as the order of the local client updates. This depends on the concurrency control

scheme selected by the clients.

2.2 Selectable concurrency control

When it is not possible to decide whether it is safe to proceed, there are two alternatives.

Optimistic behaviour prescribes to continue work, hoping that no consistency problems will

occur. There is progress at the (potential) cost of later having to merge the current changes

with that of others. This will for instance be the case when the occurrence a write{write

con
ict was invisible due to a network partition. The other alternative is to act pessimistically

and not change shared data on which there is no exclusive write permission. There will be no

inconsistencies, but progress is sacri�ced. This is the essence of the well known consistency

problem in partitioned networks [Davidson85].

Pessimistic concurrency control is chosen by clients who need a guarantee that write{write

con
icts do not occur on �les they intend to change. In order to choose pessimistic concurrency

control, clients must be able to identify those places where con
icts has a potential to occur.

Changed �les can be inserted to the Fr with the guarantee that no write{write con
ict will

occur, provided that the insert operation succeeds. If a distributed Fr is partitioned when

the client reconnects, and the client ends up in a minority partition, the insert operation is

not guaranteed to succeed.

The user is responsible for resolving any con
icts that may arise due to insu�cient locking.

The use of optimistic concurrency control increases availability and promotes progress in

distributed computations at the expense of involving the user or application in resolving

con
icts. In such cases, user or application level semantics can be used to make decisions

that could not be taken at the system level.

3 Architecture

The architecture consists of clients that communicate with the Fr by the Frtp proto-

col [StabellKulo95]. Operations available to clients for interaction with the Fr are given

in Table 1.

Files in Fr are immutable to make it easier to handle the problems with concurrent reading

and writing. A client that starts a read operation on a �le is guaranteed to obtain data from

the same version even if a new version of the �le is made while the read is in progress. Previous

Extract-P Pessimistic extraction

Extract-O Optimistic extraction

Extract-S Snapshot extraction

Insert Ordinary insert

Insert-A Asynchronous insert

Lock Obtain a write lock

Release Release a lock

Refresh Refresh a lock

Flush Flush �le, keep lock

Delete Delete �le

Stat File status (meta data)

Walk Walk directory structure

Table 1: Operations provided by the File Repository

versions are however still available for those clients that hold the appropriate tokens. File

versions are not explicitly visible in the naming scheme. A client that presents the name of a

�le in a read operations, will always get the latest version available.

3.1 Pessimistic concurrency control

Clients can use the Extract-P operation to enforce pessimistic concurrency control on a

�le. A successful Extract-P operation on a �le creates a time-limited write lock on the �le

in the Fr, and copies the �le and relevant meta data to the client. The meta data serves as

a cache for client initiated Stat commands, but also contains a unique, tamper proof key,

which can unlock the write lock on the �le in the Fr. After modi�cation, the client may

Insert the �le into the Fr. Normally, the Insert operation presents the key to the server

in order to certify its write permission, writes the whole �le and relevant meta data back to

the server and releases the lock. The server will atomically create a new version of the �le

and associated meta data. Old versions are however guaranteed not to be deleted as long as

any operations are still active on them.

3.2 Optimistic concurrency control

The Extract-O operation is provided for clients that choose optimistic concurrency control.

The operation will return the last committed version of the �le. If the �le is replicated in

Fr, the operation will only succeed if a read quorum for the last committed version can

be obtained. Otherwise, the client may select the Extract-S operation which copies the

last version of the �le and meta data available at the server. There is no guarantee about

the freshness of that version. The meta data for both the Extract-O and Extract-S

operations contain a key that uniquely identi�es the �le. The Lock command gives a client

that has extracted a �le optimistically, either by Extract-O or Extract-S, the opportunity

to change into pessimistic concurrency control as achieved by Extract-P.

The operations Release, Refresh and Flush makes it easier to utilise resources based

on availability. A write lock may be released with the Release operation without any �le

data being transferred. The operation will only succeed if the client can show a valid key for

FRfiles

copies EXTRACT

INSERT

Mobile client

FRfiles

Figure 1: Using di�erent servers

the lock on the �le. In the same fashion, the validity of a write lock may be prolonged by the

Refresh command.

3.3 Servers

The Fr is implemented by a set of servers. Servers are normally statically connected comput-

ers operating in a stable, well connected environment. In order to ensure progress, the archi-

tecture relies on that the servers implementing a replicated Fr are not partitioned. However,

the architecture does not prohibit that a computer with fewer and varying resources|e.g. a

notebook computer|to be a server.

3.4 Clients

Client machines are normally portable computers with few resources. Client applications

implement user-level operations on the Fr and maintains the user's view of it. They also

maintain state, which includes extracted �les and corresponding meta data and locks. We

make few assumptions about the environments in which these machines are operating.

A client can initiate sessions with di�erent servers, for instance it may check out �les from

one server and check them in at another, possibly after being disconnected for a long time

(see �gure 1).

The asynchronous Insert-A operation may be the best choice for a client whose locks

are about to expire, and that will accept an operation with less guarantees. The server will

propagate the changes (i.e., update replicas) according to a best{e�ort policy. In this way,

the risk of loosing changes may be less, or the need for manual merging after the lock has

expired may be reduced. Moreover, this allows the client to utilise high bandwidth with a

local server without having to wait for updates of replicas, and rely on the server to propagate

the changes. These operations require that the user understands their semantics.

4 Related work

Although the objects handled by Fr are �les, we do not view the Fr as a �le system. Fr does

not provide storage, it manages meta data about the �les entrusted to it. Other �le systems,

notably NFS [Sandberg85], does not provide storage either. But, in contrast to NFS, the

FR is not a system service and it is not accessed through the read and write system calls.

And while NFS must be installed as a �le system (in the kernel) in order to catch �le system

operations as the arrive, Fr does not need any particular operating system support and it

runs entirely in user space. This also makes the Fr stand out against approaches where

mobility is handled by changing the operating system, as in [Bender93].

FR provides mechanisms for several concurrency control policies. In particular, Fr does

not enforce optimistic concurrency control as done by Coda [Kistler91]. The fundamental

issue is that Coda has no way of knowing whether an inconsistency may occur, at the time

of the update. The user will be faced with this problem later, at reconnect. It is clear that

this approach can not be used in a system where �les are frequently shared. Coda assumes

that most �les are private or part of the system as such|binary programs and libraries that

are seldom altered|and manual intervention is needed when con
icts are detected. The Fr,

on the other hand, is designed to foster active sharing of �les and write{write con
icts are

common.

We do not strive for transparency, as some systems do [Guy90, Kistler91, Satyanarayanan93].

We believe that providing the means for convenient concurrency control gives the user more

exibility. Although a replica management policy may provide access to data in a seemingly

transparent way, the assertion of frequent disconnections will ensure that data will at times

be incorrectly assumed up to date. In many settings, we believe it is better to know that

update is not safe, rather than relying on some common case optimization which may fail.

The important issue is that the user, and not the system, makes the choice when to act

optimistically.

Since Fr runs in user space, name space maintenance is beyond its scope. Other systems,

such as Locus [Walker83] and Coda [Kumar93], provides mechanisms to resolve name space

con
icts when the optimistic assumptions is detected to have been violated. Fr avoids the

problem altogether by the requirement that names are created by a write-all policy at check{

in.

Of the three challenges of mobile computing: communication, mobility and portabil-

ity [Forman94], we do not consider communication technology. Furthermore, we do not

consider the e�ects of physical movement while connected to some network such as dynamic

routing, address migration and so forth. We assume that either a machine is connected, or it

is not connected.

5 Current State

The interface to the Fr is realised by the Frtp protocol. This means that any application

can utilize the Fr \simply" by speaking the protocol. To make life somewhat easier for users

and programmers alike, we provide three means to access the Fr.

The �rst is the Fr-library that contains a protocol engine. With this library, applications

can be written (or modi�ed) to get �les from a Fr rather than from a local �le system.

Knowing the name of a �le (in the Fr) is su�cient to retrieve a copy. The library can both

return the contents of the �le in a bu�er in memory, or given a �le handle, write to a local �le.

In both cases the routines will also return information about the state of the newly obtained

copy.

The second is a set of applications. These, which are run in a traditional Unix command-

line style, is not bound to any particular operating system. They contain the Fr-library,

and uses the widely available Berkeley Socket interface towards TCP/IP on any underlying

network. These applications run, in particular, on Ms-Dos and Unix. With these tools,

a user can retrieve a �le from the Fr and store a copy locally. Any software system, for

example a word processor, can then be used on the �le as usual. After alteration, the �le can

be written back to the Fr with the same set of tools.

The third is an application, also built on the library, that have the \look and feel" of a �le

manager. Through it a user can manipulate �les in the Fr, move �les from the local disk or

from the repository and onto the local disk, locks can be set and status information obtained.

It supports \drag and drop" operations on both �les and directories (local and remote), and

translates these operations to a set of interactions with the Fr by the means of Frtp.

We have implemented a �rst version of a server that runs on Unix. Experience suggest

re-design of the Frtp protocol to reduce network tra�c. Moreover, security is now becoming

a concern due to the use of new networking technology. A new server is therefore under

development.

Initial results indicate that user selectable concurrency control overcomes the obstacle

created by the lack of knowledge of the global state. Users generally have a good idea of

what the global state is, and the uncertainty is (partly) overcome by judgement. The Fr

detects con
icts, but the users' choice of concurrency control ensures that the system behaves

predictable. The preliminary results are based on TCP/IP over Ethernet LAN and modem

(SLIP), and, towards remote servers, across the Internet.

We are in the process of establishing a wireless network with small cells based on infrared

(IR). IR will play a major role in our testbed for mobile systems in the future. Our partners

in Pisa have designed transceivers, and we expect a network to be operative during 1996. We

have chosen IR since it exposes us to a number of challenges, most notably a
uctuation in

bandwidth and connectivity not found on modern local area networks and the existence of

cheap receivers and transmitters available to anyone.

In general, the initial results make us con�dent that the approach we have taken, combined

with the solutions we propose, provide a sound basis for a working experimental system.

Pasta is a basic research project. In order to evaluate some initial design choices, we

teamed up with researchers from the University of Twente, The Netherlands, and created a

new project, called MobyDick. Its focus is to build a system with integrated applications

intended for small hand-held computers, a pocket companion. This will enable us to acquire

knowledge about the communication and consistency requirements as well as how users ac-

tually use the infrastructure we have designed in Pasta. MobyDick has been accepted for

funding by Esprit IV (LTR).

References

[Alanko95] Timo Alanko, Markku Kojo, Heimo Laamanen, Mika Liljeberg, Marko Moilanen,

and Kimmo Raatikainen. Measured Performance of Data Transmission Over Cellular

Telephone Networks. ACM Computer Communication Review, 24(5):24{44, Oct. 1995.

[Bender93] Michael Bender, Alexander Davidson, Clark Dong, Steven Drach, Anthony Glen-

ning, Karl Jacob, Jack Jia, James Kempf, Nachiappan Periakaruppan, Gale Snow, and

Becky Wong. UNIX for nomads: Making UNIX support mobile computing. Proceed-

ings USENIX Symposium on Mobile & Location-Independent Computing, pages 53{68.

USENIX, Aug 1993.

[Davidson85] Susan Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency in parti-

tioned networks. ACM Computing Surveys, 17(3):341{70, September 1985.

[Forman94] G. H. Forman and J. Zahorjan. The challenges of mobile computing. IEEE

Computer, 27(4):38{47, April 1994.

[Guy90] Richard G. Guy, John S. Heidemann, Wai Mak, Jr Thomas W. Page, Gerald J.

Popek, and Dieter Rothmeir. Implementation of the Ficus Replicated File System.

USENIX Conference Proceedings (Anaheim, CA), pages 63{72. USENIX, Summer 1990.

Also available from ftp://shemp.cs.ucla.edu:/pub/�cus/usenix summer 90.ps.Z.

[Huizinga94] Dorota M. Huizinga and Ken A. He
inger. Experience with Connected and Dis-

connected Operation of Portable Notebook Computers in Distributed Systems. Proceed-

ings of the 1st IEEE Workshop on Mobile Computing Systems and Applications (Santa

Cruz, CA, USA), pages 119{23. IEEE, Dec. 1994.

[Kistler91] James J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda �le

system. 13th SOSP (Pasi�c Grove, Ca, USA 13 October 1991). Published as SIGOPS,

25(5):213{25, October 1991.

[Kistler92] James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda �le

system. TOCS, 10(1):3{25. ACM, February 1992.

[Kumar93] Puneet Kumar and M. Satyanarayanan. Log-based directory resolution in the

Coda �le system. Proceedings of the Second International Conference on Parallel and

Distributed Information Systems, pages 202{13, 1993.

[Sandberg85] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and

implementation of the Sun Network Filesystem. USENIX Association Summer Con-

ference Proceedings of 1985 (11-14 June 1985, Portland, OR), pages 119{30. USENIX

Association, El Cerrito, CA, 1985.

[Satyanarayanan93] M. Satyanarayanan. Mobile computing. IEEE Computer, 26(9):81{2,

September 1993.

[StabellKulo95] Tage Stabell-Kul�. File Repository Transfer Protocol (FRTP). Technical

report CS-TR 95-21. Department of Computer Science, University of Troms�, Norway,

Feb. 1995. Available as http://www.cs.uit.no/Lokalt/Rapporter/Reports/9521.html.

[Walker83] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel. The

LOCUS distributed operating system. Proceedings of the 9th ACM SOSP, pages 49{70,

oct 1983.

